LIST OF SITES

Administrative Building
Library Building
Girls Hostel
Central School
Academic Building No. 1
Academic Building No. 2
School of Management
PG Boys Hostel No. 1
PG Boys Hostel No. 2
PG Boys Hostel No. 3
Natural Resources Building

REPORT ON

A

GEOTECHNICAL INVESTIGATION FOR THE CONSTRUCTION OF THE PROPOSED G+3 STORIED <u>ADMINISTRATIVE</u> <u>BUILDING</u> IN PERMANENT CAMPUS OF CENTRAL UNIVERSITY OF JHARKHAND AT VILLAGE CHERI / MANATU, IN BLOCK - KANKE RANCHI

SUBMITTED TO:

O.S.D. PROJECT CENTRAL UNIVERSITY OF JHARKHAND CITY CENTRE OPP. CMPDI, KANKE ROAD RANCHI, JHARKHAND

EXECUTED BY:

JHARKHAND FOUNDATION CONSULTANTS Regd. Office: FLAT NO. 4-D (4TH FLOOR) LAXMI APPARTMENT OLD ARGORA ROAD, ARGORA RANCHI – 834002 Ph. – 9431389413 / 09931095033

491-1

Table of Contents

> CHAPTER I	
Introduction	1
CHAPTER II	
Project Details	2
CHAPTER III	
Laboratory Testings	3
CHAPTER IV	
Foundation Design & aspects	4-5
CHAPTER V	ć
Sub-Soil profile and recommendation	6
Calculation of bearing capacity	7
Field Bore Log data sheet	8-9

CHAPTER - I

1.0 INTRODUCTION:

- 1.1. In an attempt to facilitate the design of foundation structures for the construction of the proposed <u>Administrative Building</u> in permanent campus of Central University of Jharkhand at village Cheri / Manatu, Block-Kanke, Ranchi, Jharkhand a subsoil investigation work was programmed and for this, the services of M/s. Jharkhand Foundation Consultants, Flat No. 4D (Forth Floor), Laxmi Apartment, Old Argora Road, Argora, Ranchi-834002.
- 1.2. The scope of the soil investigation consisted of making two nos. of bore holes for this proposed building.
- 1.3. The formation at the site is to be reported for various layers presented at their respective depth along with their thickness. This would also include the subsoil properties for each stratum so as to come up with the design parameters for designing foundations, the depth of foundation and the selection of type of foundation. As the ground water table location influences the bearing capacity of a foundation and the method of construction of a foundation at the site, its location has also to be found.
- 1.4. Soil samples both in disturbed and undisturbed condition wherever possible are to be collected. These samples would be different laboratory tests to obtain various properties of sub-soil formation.
- 1.5. The exploration of the sub-soil formation being limited to two nos. bore holes it is suggested that due weighted is given to the unexplored part of the area at the time of selecting design parameters.

Jharkhand Foundation Consultants

221040250A

1

CHAPTER - II

2.0 **PROJECT DETAILS:**

2.1. The fieldwork consisted of **two** nos. of bore hole at pre-determined location. The detail of fieldwork like depth of bore hole, date of the field work of site are presented below in tabular form:

Sl. No.	Bore Hole No.	Terminating Depth (M)	Date of commencement	Date of completion
1	BH-01	2.00	18/02/2012	18/02/2012
2	BH-02	2.00	18/02/2012	18/02/2012

The fieldwork also included collection of undisturbed samples, disturbed samples and conducting standard penetration tests at regular intervals. The bore holes of 150mm diameter (SX size) are sunk by hand auger boring. The field work was carried out as per IS: 1892.

2.2. Standard penetration tests were conducted in the bore hole at regular intervals as per IS: 2131 in bore hole using a split spoon sampler. The split spoon sampler used for this test advanced by driving with a monkey weighing 63.5kg, falling freely through 750mm. The soil specimens were preserved in polythene bags for logging purpose.

CHAPTER - III

3. LABORATORY TESTING:

No laboratory tests were conducted on the collected samples due to the presence of moorum, kankars and highly weathered decomposed product of rock.

Grain size analysis. Liquid Limit, Plastic Limit Tests. Bulk Density, Dry Density. Natural Moisture Content. Specific Gravity. Unconsolidated Undrained (UU) test. One dimensional consolidation test.

The tests were conducted as per relevant IS Specifications.

221040250A

CHAPTER - IV

4.0 FOUNDATION DESIGN ASPECTS:

A suitable foundation for any structure should have an adequate factor of safety exceeding the bearing capacity of the supporting soils. Also the vertical movements due to compression of the soil should be within tolerable limit for the structure. The foundations in accordance with the recommendations herein will satisfy these criteria.

FOUNDATION DESIGN CRITERIA

The maximum permissible total settlement and differential for the foundation settlement is governed by the technical requirements of the structure.

BEARING CAPACITY OF OPEN FOUNDATION

Bearing capacity analysis for shallow foundations has been done in accordance with IS: 6403-1981. The following equation has been used for the analysis.

 $q_{\text{net safe}} = 1/F(CN_cS_cD_c + p(N_q-1)S_qD_q + 0.5B_{\gamma}N_{\gamma}S_{\gamma}D_{\gamma}R_w)$

Where q_{net safe} = Safe net bearing capacity of soil based on the shear failure criteria

- C = Cohesion of clay
- γ = Unit weight of soil
- p = Overburden pressure
- B = width of foundation
- R_w = Water table correction factor

221040250A

F = Factor of safety

 N_{c} , N_{q} , N_{γ} = Bearing capacity factors

 $S_{c,} S_{q,} S_{\gamma}$ = Shape factors

 D_c , D_q , D_γ = Depth factors

All the Bearing capacity factors, Shape factors and depth factors has been considered as IS:6403-1981, Table -1 clause - 5.1.1, 5.1.2.1 and 5.1.2.2 respectively.

SETTLEMENT ANALYSIS FOR SHALLOW FOUNDATION

Settlement calculation has been done as per IS: 8009 (Part-1)-1976.

Immediate settlement considered as per clause 9.2.3.2

 $S_i = (pB(1-\mu^2)I)/E$

Where μ = Piosson's ratio = 0.5 for clay

I = Influence factor

Consolidation settlement considered as per clause 9.2.2.2

 $S_c = Ht/(1+e_0) \ge C_c \log_{10} ((p_0 + \Delta p)/p_0) \ge \lambda_{oed} \ge d_f \ge d_r$

Where S_c = Consolidation settlement

 H_t = Thickness of the compressible layer

 C_c = Co-efficient of consolidation

 e_0 = initial void ratio

 p_0 = initial overburden pressure

 Δp = increase in overburden pressure

 λ_{oed} = Oedometer correction factor

 d_f = depth factor

d_r = Rigidity factor

CHAPTER - V

5.0 SOIL PROFILE AND & RECOMMENDATION

From the exploratory bore holes at the site it is observed that sub soil formation at this site consists of cohesionless formation at ground surface and highly weathered decomposed product of rock below. Details of the formations along with the "N" values are shown in the field bore log data sheets.

Based on calculation the following bearing capacities are recommended:

SBC for Open foundatio									
Depth	(ton/m ²)								
(m) from									
EGL									
1.50	19.0								
2.00	23.0								

* Detail calculations are shown in the subsequent pages. However, any other alternative solutions may be suitably adopted based on these soil data and with any modified interpretation of geo-technical expert.

Hann

(A Maiti) (M.E. Soil Mech. and Fdn. Engg.) (Chartered Engineer)

221040250A

, °••,

CALCULATION OF BEARING CAPACITY FOR SHALLOW FOUNDATIONS FROM SHEAR FAILURE CONSIDERATION

	earing capacity of foundation of different sizes of foundation at different depth														
Bear	Bearing capacity of foundation of different sizes of foundation at different depth As per IS:6403-1981 Cl. 5.1.2														
As p	ns per IS:6403-1981 Cl. 5.1.2 n case of General shear failure _{inet safe} =1/F[CN _c S _c d _c i _c + q(N _q -1)S _q d _q i _q + 0.5BγN _γ S _γ d _γ i _γ R _w ']														
In ca	In case of General shear failure _{Anet safe} =1/F[CN _c S _c d _c i _c + q(N _q -1)S _q d _q i _q + 0.5BγN _γ S _γ d _γ i _γ R _w '] In case of Local shear failure														
q _{net sa}	_{fe} =1/3	F[CN _c S	$d_c i_c + q$	(N_q-1))S _q d _q i	_q + 0.5	BγN _γ S _γ	d _y i _y R _w]						
In ca	se of L	local she	ear failu	are											
g _{net sa}	_{fe} = 1/	F[0.67{C	CN' _c S _c d	$i_{cl} + c$	ı(N'₀-1	l)S_d_i	a + 0.51	BγN',S	,d,i,R,	.']					
Cons	iderin	g the w	orst cas	e as f	ullv su	ıbmer	sed i.e.	water	table	raises u	pto th	le gr	oun	d surface	
Whe	re a	mat mat = 9	Safe bea	aring	capaci	itv					r	0-			
	C = C	Cohecior		8	P		$\mathbf{R} = \mathbf{W}$	idth of	the fo	undati	171				-
	v = B	ulk unit	woight	ŀ			D - W	iuui oi	uie io	unuan	JII				
	J D	M = R	aring	anacit	a facto	270	444	1 – D	onth f	actors					
		9' ¹ y - D	earing t	apaci	y facto	15		4 - D	epui i	actors					
	S_{σ}, S_{q}	$S_{\gamma} = Sh$	ape Fac	ctors		~ ~	$1_{c}, 1_{q}, 1_{\gamma}$	= Incl	inatio	n factor	s				
	SHA	PE FAC	TORS	(IS:64	103-19	81), C	lause 5	1.2.1,	table-2		r			1	
	Snap	e of fou	Indatio	n 		Sc			s _q			Sγ			
	1)Cc	ntinuou	is strip		1	1.00	(1)	1	1.00	/1)	10	1.00	T \		
	(11) Ka	ctangle				+0.2(B)	/L)		+0.2(B)	/L)	1-0.	4(B/	L)		
	$\frac{111}{100}$ Science	juare				1.30			1.20			0.60			
1	DEP	TH FAC	TORS	(15:64	103-19	81, C	lause 5	.1.2.2	1.20		<u> </u>				
		1		11+0	2/17/1	P)o art	(NL)					1			
	$\mathbf{d_c} = \frac{1+0.2(D/B)\operatorname{sqrt}(N_{\Phi})}{1+0.2(D/B)\operatorname{sqrt}(N_{\Phi})}$														
	L	dq		for t	P < 10		tor $\Phi >$	$10^{\circ} = 1$	+ 0.1(D	f/B)sqrt	ΊN _Φ				
	L	d _γ		for o	$P < 10^{\circ}$	/=1	for $\Phi >$	$10^{\circ} = 1$	+ 0.1(D	_f /B)sqrt	N _o				
Now	,	C =		0	t/m²	γ=	2.000	t/m ³		SqN₀=	1.963				
		Φ =		3	36	γ _{sub} ≕	1.000	t/m³		C'=	0				
Beari	ng Ca	pacity fa	actors a	s per	IS:640	3-1981	l Table	1 Clau	ıse 5.1.	.1					
		BCE	actors	Ger	ieral S	Shear	Lo	cal Sh	ear						
					failue	r	jj	failue							
		N	c=		49.316	6		21.846							
		N	q=		36.28			11.475							
		N			53.15	6		11.930		1					
Using	the Fac	tor of Saf	fety =	6						1					
of	5 (j	of on	Ъ Ę											a	
ize .		ati	th ati								Incli	inati	ion	from	SBC
ŝ.	Dui	Sha	Del	R _w	Sha	ape fa	ctors	De	pth fa	ctors	fa	ctor	s	GSFailure	T/m^2
	101	for	lof										-	t/m^2	17 11
R	r r				S.	S.	S.,	<u>d.</u>	d_		i.	i.	i.	9111	
1.50	1.50		1.50	0.50	1.30	1.20	0.80	1.39	1.20	1.20		-q 	-y 	19.02	19.02
2.00	2.00		1.50	0.50	1.30	1.20	0.80	1.29	1.15	1.15				20.27	20.27
2.50	2.50		1.50	0.50	1.30	1.20	0.80	1.24	1.12	1.12			1	21.73	21.73
3.00	3.00		1.50	0.50	1.30	1.20	0.80	1.20	1.10	1.10				23.30	23.30
1.50	1.50		2.00	0.50	1.30	1.20	0.80	1.52	1.26	1.26				24.51	24.51
2.00	2.00	Square	2.00	0.50	1.30	1.20	0.80	1.39	1.20	1.20				25.36	25.36
2.50	2.50	oquare	2.00	0.50	1.30	1.20	0.80	1.31	1.16	1.16				26.58	26.58
3.00	3.00		2.00	0.50	1.30	1.20	0.80	1.26	1.13	1.13				27.98	27.98
1.50	1.50		2,50	0.50	1.30	1.20	0.80	1.65	1.33	1.33				30.46	30.46
2.00	2.00		2.50	0.50	1.30	1.20	0.80	1.49	1.20	1.20				31.70	31.70
2.00	2.00		2.50	0.50	1.30	1 20	0.80	1.33	1.16	1.16				32.89	32.89
3.00	0.00				1.1.1.1.1										

Jharkhand Foundation Consultants

GEOTECHNICAL INVESTIGATION FOR THE PROPOSED CONSTRUCTION OF G + 3 STORIED BUILDING IN PARMANENT CAMPUS OF CENTRAL UNIVERSITY OF JHARKHAND IN VILLAGE - CHERI/MANATU UNDER JHARKHAND													
FIELI Bore Hole No. BH-01 (Administra	<u>) BORE</u> ative Bui	<u>LOG DA'</u> lding)	<u>TA SHE</u>	ET					_				
Method of Boring Auger and Rotary Dia. of the Bore Hole 150 mm				Water	: Table	5	2.50m bgl						
Date of Commencement 18/02/2012	SYMBOL	DEP	тн	Date	of Con SPT	npletic	on N-Value	18/02/2 Type of	012 Remarks				
Depth Depth		From(m)	To (m)	0-15	15-30	30-45	<u> </u>	sample					
Reddish mooram 0.50m		0.50	-	-	-	-	-	DS					
and pabbles		1.00	1.45	10	15	20	35	SPT/DS					
Light greyish weathred rock mix with boulder and calcareous noodles		2.00	2.08	50 blo pe	ows fo netrati	r 8cm ion	>100	SPT/DS					
		(Termina	ation D	epth =	= 2.00	m)							
									;				
		- - -		-									
							:						
SPT - Standard Penetration Tests		DS - Dist	urbed s	ample	s	UDS	- Undist	urbed sa	mples				

8

. . . .

221040250A

Ranch

		FIELI) BORE	LOG DA	ГА SHE	ET						
ore Ho	le No.	BH-02 (Administra	ative Bui	lding)								
lethod	of Boring	Auger and Rotary				Water	Table	2	2.50m bgl			
ia. of tl	ne Bore Hole	150 mm				_						
Date of Commencement 18/02/2012 Date of Con			of Con	npletic	on	18/02/20)12					
Date and	DESC	CRIPTION	SYMBOL	DEP	IH Tr ()	0.15	SPT	20.45	N-Value	sample	Kemai	
Deptit			THE STREET SET	From(m)	10 (m)	0-15	15-30	30-45				
	Dark brown weat	hered to soft rock		0.50	-	-	-	-	-	DS		
	1.	.50m		1.00	1.45	6	13	28	41	SPT/DS		
	Yellowish grey de rock mix with gra	composed product o vels	f	2.00	2.21	34, 5 6cm j	0 blow penetr	vs for ation	>100	SPT/DS		
				(Termina	ation De	epth =	= 2.00	m)				
						1					1	

221040250A

1

Panch

REPORT ON GEOTECHNICAL INVESTIGATION FOR THE CONSTRUCTION OF THE PROPOSED G+3 STORIED LIBRARY BUILDING IN PERMANENT CAMPUS OF CENTRAL UNIVERSITY OF JHARKHAND AT VILLAGE CHERI / MANATU, IN BLOCK - KANKE RANCHI

A

SUBMITTED TO: O.S.D. PROJECT CENTRAL UNIVERSITY OF JHARKHAND CITY CENTRE OPP. CMPDI, KANKE ROAD RANCHI, JHARKHAND

EXECUTED BY:

JHARKHAND FOUNDATION CONSULTANTS Regd. Office: FLAT NO. 4-D (4TH FLOOR) LAXMI APPARTMENT OLD ARGORA ROAD, ARGORA RANCHI – 834002 Ph. – 9431389413 / 09931095033

Table of Contents

> CHAPTER I	
Introduction	1
CHAPTER II	
Project Details	2
CHAPTER III	
Laboratory Testings	3
CHAPTER IV	
Foundation Design & aspects	4-5
CHAPTER V	6
Sub-Soil profile and recommendation	0
Calculation of bearing capacity	7
Field Bore Log data sheet	8-9

CHAPTER - I

1.0 INTRODUCTION:

- 1.1. In an attempt to facilitate the design of foundation structures for the construction of the proposed <u>Library Building</u> in permanent campus of Central University of Jharkhand at village Cheri / Manatu, Block-Kanke, Ranchi, Jharkhand a subsoil investigation work was programmed and for this, the services of M/s. Jharkhand Foundation Consultants, Flat No. 4D (Forth Floor), Laxmi Apartment, Old Argora Road, Argora, Ranchi-834002.
- 1.2. The scope of the soil investigation consisted of making two nos. of bore holes for this proposed building.
- 1.3. The formation at the site is to be reported for various layers presented at their respective depth along with their thickness. This would also include the subsoil properties for each stratum so as to come up with the design parameters for designing foundations, the depth of foundation and the selection of type of foundation. As the ground, water table location influences the bearing capacity of a foundation and the method of construction of a foundation at the site, its location has also to be found.
- 1.4. Soil samples both in disturbed and undisturbed condition wherever possible are to be collected. These samples would be different laboratory tests to obtain various properties of sub-soil formation.
- 1.5. The exploration of the sub-soil formation being limited to two nos. bore holes it is suggested that due weighted is given to the unexplored part of the area at the time of selecting design parameters.

Jharkhand Foundation Consultant

4oundation

Panch

CHAPTER - II

2.0 **PROJECT DETAILS:**

2.1. The fieldwork consisted of two nos. of bore hole at pre-determined location.The detail of fieldwork like depth of bore hole, date of the field work of site are presented below in tabular form:

Sl. No.	Bore Hole No.	Terminating Depth (M)	Date of commencement	Date of completion
1	BH-01	2.00	18/02/2012	18/02/2012
2	BH-02	2.00	18/02/2012	18/02/2012

The fieldwork also included collection of undisturbed samples, disturbed samples and conducting standard penetration tests at regular intervals. The bore holes of 150mm diameter (SX size) are sunk by hand auger boring. The field work was carried out as per IS: 1892.

2.2. Standard penetration tests were conducted in the bore hole at regular intervals as per IS: 2131 in bore hole using a split epoon sampler. The split spoon sampler used for this test advanced by driving with a monkey weighing 63.5kg, falling freely through 750mm. The soil specimens were preserved in polythene bags for logging purpose.

CHAPTER - III

3. LABORATORY TESTING:

No laboratory tests were conducted on the collected samples due to the presence of moorum, kankars and highly weathered decomposed product of rock.

Grain size analysis. Liquid Limit, Plastic Limit Tests. Bulk Density, Dry Density. Natural Moisture Content. Specific Gravity. Unconsolidated Undrained (UU) test. One dimensional consolidation test.

The tests were conducted as per relevant IS Specifications.

CHAPTER - IV

4.0 FOUNDATION DESIGN ASPECTS:

A suitable foundation for any structure should have an adequate factor of safety exceeding the bearing capacity of the supporting soils. Also the vertical movements due to compression of the soil should be within tolerable limit for the structure. The foundations in accordance with the recommendations herein will satisfy these criteria.

FOUNDATION DESIGN CRITERIA

The maximum permissible total settlement and differential for the foundation settlement is governed by the technical requirements of the structure.

BEARING CAPACITY OF OPEN FOUNDATION

Bearing capacity analysis for shallow foundations has been done in accordance with IS: 6403-1981. The following equation has been used for the analysis.

 $q_{net safe} = 1/F(CN_cS_cD_c + p(N_q-1)S_qD_q + 0.5B_\gamma N_\gamma S_\gamma D_\gamma R_w)$

Where q_{net safe} = Safe net bearing capacity of soil based on the shear failure criteria

- C = Cohesion of clay
- γ = Unit weight of soil
- p = Overburden pressure
- B = width of foundation
- R_w = Water table correction factor

Jharkhand Foundation Consultants

F = Factor of safety

 N_{c} , N_{q} , N_{γ} = Bearing capacity factors

 S_{c}, S_{q}, S_{γ} = Shape factors

 D_c , D_q , D_γ = Depth factors

All the Bearing capacity factors, Shape factors and depth factors has been considered as IS:6403-1981, Table -1 clause - 5.1.1, 5.1.2.1 and 5.1.2.2 respectively.

SETTLEMENT ANALYSIS FOR SHALLOW FOUNDATION

Settlement calculation has been done as per IS: 8009 (Part-1)-1976.

Immediate settlement considered as per clause 9.2.3.2

 $S_i = (pB(1-\mu^2)I)/E$

Where μ = Piosson's ratio = 0.5 for clay

I = Influence factor

Consolidation settlement considered as per clause 9.2.2.2.

 $S_c = Ht/(1+e_0) \ge C_c \log_{10} ((p_0 + \Delta p)/p_0) \ge \lambda_{oed} \ge d_f \ge d_r$

Where S_c = Consolidation settlement

 H_t = Thickness of the compressible layer

 C_c = Co-efficient of consolidation

- e_0 = initial void ratio
- p_0 = initial overburden pressure
- Δp = increase in overburden pressure
- λ_{oed} = Oedometer correction factor

 $d_f = depth factor$

dr = Rigidity factor

CHAPTER - V

5.0 SOIL PROFILE AND & RECOMMENDATION

From the exploratory bore holes at the site it is observed that sub soil formation at this site consists of cohesionless formation at ground surface and highly weathered decomposed product of rock below. Details of the formations along with the "N" values are shown in the field bore log data sheets.

Based on calculation the following bearing capacities are recommended:

SBC for O	pen foundation
Depth	(ton/m ²)
(m) from	
EGL	
1.50	18.0
2.00	22.0

* Detail calculations are shown in the subsequent pages. However, any other alternative solutions may be suitably adopted based on these soil data and with any modified interpretation of geo- minical expert.

slanto

(A Maiti) (M.E. Soil Mech. and Fdn. Engg.) (Chartered Engineer)

CALCULATION OF BEARING CAPACITY FOR SHALLOW FOUNDATIONS

.

			I	FROM	<u>и SH</u>	EAR	FAILU	J <u>RE C</u>	<u>ONS</u>	DERA	TIO	N			
Beari	ng cap	pacity of	founda	ation	of diff	erent	sizes of	found	lation	at diffe	rent d	leptl	h		
As pe	As per IS:6403-1981 Cl. 5.1.2 n case of General shear failure $a_{metsefe} = 1/F[CN_cS_cd_{cic} + q(N_0-1)S_0d_0i_0 + 0.5ByN_vS_vd_vi_vR_w']$														
In cas	n case of General shear failure net safe =1/F[CN _c S _c d _c i _c + q(N _q -1)S _q d _q i _q + 0.5BγN _y S _y d _y i _y R _w '] n case of Local shear failure														
9 _{net sa}	$\begin{aligned} & = 1/F[CN_cS_cd_ci_c + q(N_q-1)S_qd_qi_q + 0.5B\gamma N_\gamma S_\gamma d_\gamma i_\gamma R_w'] \\ & \alpha \text{ case of Local shear failure} \\ & \alpha_{\text{net safe}} = 1/F[0.67\{CN_c^{'}S_cd_ci_{cl} + q(N_q^{'}-1)S_qd_qi_q + 0.5B\gamma N_\gamma S_\gamma d_\gamma i_\gamma R_w'] \end{aligned}$														
In cas	The case of Local shear failure $net_{safe} = 1/F[0.67\{CN'_cS_cd_{ci_cl} + q(N'_q-1)S_qd_{qi_q} + 0.5B\gamma N'_\gamma S_\gamma d_\gamma i_\gamma R_w']$ Considering the worst case as fully submersed i.e. water table raises upto the ground surface														
q _{net sat}	$\begin{array}{l} & \label{eq:netsafe} = 1/F[0.67\{CN'_cS_cd_ci_{c}] + q(N'_q-1)S_qd_qi_q + 0.5B\gamma N'_\gamma S_\gamma d_\gamma i_\gamma R_w'] \\ & \label{eq:netsafe} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$														
Cons	Considering the worst case as fully submersed i.e. water table raises up to the ground surface Where $q_{net safe} = Safe bearing capacity$ C = Cohesion B = Width of the foundation														
Wher	Where $q_{\text{net safe}} = \text{Safe bearing capacity}$ C = Cohesion $B = Width of the foundationy = Bulk unit weight$														
	$C = Cohesion$ $\gamma = Bulk unit weight$ $N_{cr} N_{qr} N_{qr} = Bearing capacity factors$ $d_{cr} d_{qr} d_{r} = Depth factors$														
	$\gamma = Bulk unit weight$ $N_{c'} N_{q'} N_{\gamma} = Bearing capacity factors$ $d_{c'} d_{q'} d_{\gamma} = Depth factors$														
	$N_{cr} N_{qr} N_{q} = Bearing capacity factors$ $S_{cr} S_{rr} S_{rr} = Shape Factors$ $i_{rr} i_{rr} i_{rr} = Inclination factors$														
	$S_{cr} S_{qr} S_{\gamma} =$ Shape Factors $i_{cr} i_{qr} i_{\gamma} =$ Inclination factors														
	SHAPE FACTORS (IS:6403-1981), Clause 5.1.2.1, table-2														
	Shape of foundation s_c s_q s_{γ}														
i) Continuous strip 1.00 1.00 1															
	ii) Ra	ctangle	`		1.	+0.2(B,	/L)	1	+0.2(B/	/L)	1-0.	4(B/	Ľ)	1	
	iii) Sq	luare				1.30			1.20		1	0.80			
	iv) Ci	rcular				1.30			1.20			0.60			
	DEPI	IH FAC	TORS	(15:64	103-19	81), C	lause 5.	.1.2.2				1			
		d,		1+0.	2(D/1	3)sqrt	(N_{Φ})								
		dq		for (¢ < 10°	=1	for $\Phi >$	$10^0 = 1$	+ 0.1(D	_f /B)sqrt	Nφ				
		d _y		for ¢	$P < 10^{0}$	=1	for Φ >	$10^0 = 1$	+ 0.1(D	ı/B)sqrt	Nφ				
Now	,	C =		0	t/m ²	γ=	1.925	t/m ³		SqN₀=	1.963	-			
		Φ =		3	36	γ _{sub} ≕	0.925	t/m ³		C'=	0				
Beari	ng Caj	pacity fa	actors a	s per	IS:640	3-1981	l Table	1 Clau	ise 5.1.	.1					
		DOP		Gen	ieral S	hear	Loc	cal Sh	ear				,		
		BCFa	actors		failmo	-	f	failuer	:						
		N	,=		49.316	5		21.846							
		N	a=		36.28			11.475							
		N	<u></u>		53.15	5		11.930		1					
Using	the Fac	tor of Saf	fety =	6						1					
Ъ,	n) n	of on	o t											anat anta	
ize	() ()	ape lati	pth lati					_			Incl	inati	ion	from	SBC
ŝ	oun	Sha	Del	R _w	Sha	ipe fa	ctors	De	pth fac	ctors	fa	ctor	s	GSFailure	T/m^2
	2	fo	foi											t/m ²	1
В	L				S _c	Sq	S _y	dc	dq	dy	ic	i _q	i,	-	
1.50	1.50		1.50	0.50	1.30	1.20	0.80	1.39	1.20	1.20				17.83	17.83
2.00	2.00		1.50	0.50	1.30	1.20	0.80	1.29	1.15	1.15				19.06	19.06
2.50	2.50		1.50	0.50	1.30	1.20	0.80	1.24	1.12	1.12				20.47	20.47
3.00 3.00 1.50 0.50 1.30 1.20 0.80 1.20 1.10 1.10 21.99 1.50 1.50 0.50 1.30 1.20 0.80 1.52 1.26 1.26 21.99 1.50 1.50 0.50 1.30 1.20 0.80 1.52 1.26 1.26 21.99										21.99	21.99				
2.00	2.00		2.00	0.50	1.30	1.20	0.80	1.32	1.20	1.20				22.92	22.92
2.50	2.50	Square	2.00	0.50	1.30	1.20	0.80	1.31	1.16	1.16				24.97	24.97
3.00 3.00 2.00				0.50	1.30	1.20	0.80	1.26	1.13	1.13				26.33	26.33
1.50	1.50		2.50	0.50	1.30	1.20	0.80	1.65	1.33	1.33				28.44	28.44
2.00	2.00		2.50	0.50	1.30	1.20	0.80	1.49	1.25	1.25				28.82	28.82
2.50	2.50		2.50	0.50	1.30	1.20	0.80	1.39	1.20	1.20				29.72	29.72
3.00	3.00	i 1	2.50	0.50	1.30	1.20	0.80	1.33	1.16	1.16				30.89	30.89

221040260B

GEOTECHNICAL INVESTIGATION FOR THE PROPOSED CONSTRUCTION OF G + 3 STORIED BUILDING IN PARMANENT CAMPUS OF CENTRAL UNIVERSITY OF JHARKHAND IN VILLAGE - CHERI/MANATU UNDER KANKE BLOCK, DISTT RANCHI, JHARKHAND													
	FIELD) BORE	LOG DA'	ГА SHE	ET								
Bore Hol	e No. BH-01 (Library Bui	ilding)											
Method	of Boring Auger and Rotary		Water	Table	2		2.50m bgl						
Dia. of th	ne Bore Hole 150 mm												
Date of C	Commencement 18/02/2012				Date of	of Con	npletic	on	18/02/2	012			
Date and	DESCRIPTION	SYMBOL	DEP	rH	SPT			N-Value	sample	Kemarks			
Depui		Alterative	From(m)	10 (m)	0-15	15-30	30-45						
	Reddish brown silty coarse sand		0.50	-	-	-	-	-	DS				
	1.60m		1.00	1.45	2	8	17	19	SPT/DS				
	Darkbrown mooram mix with gravles and soft rock		2.00	2.25	33, 5 10cm	0 blow penet	vs for ration	>100	SPT/DS				
			(Termina	ation D	epth =	= 2.00	m)						
								-					
								-					
SPT - Sta	andard Penetration Tests		DS - Dist	turbed s	ample	S	UDS	- Undis	turbed sa	mples			

GEOTEC CENTRA	HNICAL INVESTIGATI L UNIVERSITY OF JHA	ON FOR THE PROPOSE RKHAND IN VILLAGE	D CONST - CHERI/I JHA	TRUCTION MANATU U ARKHAND	OF G + 3 NDER	STORIE	ED BUII	LDING KAN	IN PARN NKE BLOO	IANENT C. CK, DISTT.	AMPUS OF - RANCHI,	
		FIELD	BORE	LOG DA	ГА SHE	ET						
Bore Ho Method	le No. of Boring	BH-02 (Library Bui Auger and Rotary	lding)	ling)				2		2.50m bgl		
Dia. of the Date of (he Bore Hole Commencement	150 mm 18/02/2012				Date	of Con	npletio	n	18/02/2012		
Date and	DESCR	IPTION	SYMBOL	DEP	ГН		SPT		N-Value	Type of	Remarks	
Depth			NATURA DE LA COMPANSIÓN	From(m)	To (m)	0-15	15-30	30-45		sample		
	Dark greyish brown	n silty sand		0.50	-	-	-	-	-	DS		
	1.7	0m		1.00	1.45	2	13	14	27	SPT/DS		
	Light grey gravele rock mix with calci	s to stiff product of tes	33	2.00	2.21	19, 5 6cm	0 blow penetr	rs for ration	>100	SPT/DS		
				(Termina	ation D	epth =	- 2.00	m)				
					-							
SPT - St	andard Penetration	Tests		DS - Dist	urbed s	ample	s	UDS	- Undisi	turbed sa	mples	

REPORT ON GEOTECHNICAL INVESTIGATION FOR THE CONSTRUCTION OF THE PROPOSED G+3 STORIED GIRLS HOSTEL BUILDING IN PERMANENT CAMPUS OF CENTRAL UNIVERSITY OF JHARKHAND AT VILLAGE CHERI / MANATU, IN BLOCK - KANKE RANCHI

A

SUBMITTED TO: O.S.D. PROJECT CENTRAL UNIVERSITY OF JHARKHAND CITY CENTRE OPP. CMPDI, KANKE ROAD RANCHI, JHARKHAND

EXECUTED BY:

JHARKHAND FOUNDATION CONSULTANTS Regd. Office: FLAT NO. 4-D (4TH FLOOR) LAXMI APPARTMENT OLD ARGORA ROAD, ARGORA RANCHI – 834002 Ph. – 9431389413 / 09931095033

491-3

Table of Contents

> CHAPTER I	
Introduction	1
CHAPTER II	
Project Details	2
CHAPTER III	
Laboratory Testings	3
CHAPTER IV	
Foundation Design & aspects	4-5
CHAPTER V	C
Sub-Soil profile and recommendation	0
Calculation of bearing capacity	7
Field Bore Log data sheet	8-9

ſ

CHAPTER - I

1.0 INTRODUCTION:

- 1.1. In an attempt to facilitate the design of foundation structures for the construction of the proposed <u>Girls Hostel</u> in permanent campus of Central University of Jharkhand at village Cheri / Manatu, Block-Kanke, Ranchi, Jharkhand a subsoil investigation work was programmed and for this, the services of M/s. Jharkhand Foundation Consultants, Flat No. 4D (Forth Floor), Laxmi Apartment, Old Argora Road, Argora, Ranchi-834002.
- 1.2. The scope of the soil investigation consisted of making two nos. of bore holes for this proposed building.
- 1.3. The formation at the site is to be reported for various layers presented at their respective depth along with their thickness. This would also include the subsoil properties for each stratum so as to come up with the design parameters for designing foundations, the depth of foundation and the selection of type of foundation. As the ground water table location influences the bearing capacity of a foundation and the method of construction of a foundation at the site, its location has also to be found.
- 1.4. Soil samples both in disturbed and undisturbed condition wherever possible are to be collected. These samples would be different laboratory tests to obtain various properties of sub-soil formation.
- 1.5. The exploration of the sub-soil formation being limited to two nos. bore holes it is suggested that due weighted is given to the unexplored part of the area at the time of selecting design parameters.

Jharkhand Foundation Consult

CHAPTER - II

2.0 PROJECT DETAILS:

2.1. The fieldwork consisted of **two** nos. of bore hole at pre-determined location. The detail of fieldwork like depth of bore hole, date of the field work of site are presented below in tabular form:

Sl. No.	Bore Hole No.	Terminating Depth (M)	Date of commencement	Date of completion
1	BH-01	2.00	19/02/2012	19/02/2012
2	BH-02	2.50	19/02/2012	19/02/2012

The fieldwork also included collection of undisturbed samples, disturbed samples and conducting standard penetration tests at regular intervals. The bore holes of 150mm diameter (SX size) are sunk by hand auger boring. The field work was carried out as per IS: 1892.

2.2. Standard penetration tests were conducted in the bore hole at regular intervals as per IS: 2131 in bore hole using a split spoon sampler. The split spoon sampler used for this test advanced by driving with a monkey weighing 63.5kg, falling freely through 750mm. The soil specimens were preserved in polythene bags for logging purpose.

CHAPTER - III

3. LABORATORY TESTING:

No laboratory tests were conducted on the collected samples due to the presence of moorum, kankars and highly weathered decomposed product of rock.

Grain size analysis. Liquid Limit, Plastic Limit Tests. Bulk Density, Dry Density. Natural Moisture Content. Specific Gravity. Unconsolidated Undrained (UU) test. One dimensional consolidation test.

The tests were conducted as per relevant IS Specifications.

CHAPTER - IV

4.0 FOUNDATION DESIGN ASPECTS:

A suitable foundation for any structure should have an adequate factor of safety exceeding the bearing capacity of the supporting soils. Also the vertical movements due to compression of the soil should be within tolerable limit for the structure. The foundations in accordance with the recommendations herein will satisfy these criteria.

FOUNDATION DESIGN CRITERIA

The maximum permissible total settlement and differential for the foundation settlement is governed by the technical requirements of the structure.

BEARING CAPACITY OF OPEN FOUNDATION

Bearing capacity analysis for shallow foundations has been done in accordance with IS: 6403-1981. The following equation has been used for the analysis.

 $q_{net \ safe} = 1/F(CN_cS_cD_c + p(N_q-1)S_qD_q + 0.5B_{\gamma}N_{\gamma}S_{\gamma}D_{\gamma}R_w)$

Where q_{net safe} = Safe net bearing capacity of soil based on the shear failure criteria

- C = Cohesion of clay
- γ = Unit weight of soil
- p = Overburden pressure
- B = width of foundation
- R_w = Water table correction factor

Jharkhand Foundation Consultants

F = Factor of safety

 $N_{c,} N_{q,} N_{\gamma}$ = Bearing capacity factors

 $S_{c,} S_{q,} S_{\gamma}$ = Shape factors

 D_c , D_q , D_γ = Depth factors

All the Bearing capacity factors, Shape factors and depth factors has been considered as IS:6403-1981, Table -1 clause - 5.1.1, 5.1.2.1 and 5.1.2.2 respectively.

SETTLEMENT ANALYSIS FOR SHALLOW FOUNDATION

Settlement calculation has been done as per IS: 8009 (Part-1)-1976.

Immediate settlement considered as per clause 9.2.3.2

 $S_i = (pB(1-\mu^2)I)/E$

Where μ = Piosson's ratio = 0.5 for clay

I = Influence factor

Consolidation settlement considered as per clause 9.2.2.2

 $S_c = \text{Ht}/(1+e_0) \ge C_c \log_{10} ((p_0 + \Delta p)/p_0) \ge \lambda_{\text{oed}} \ge d_f \ge d_r$

Where S_c = Consolidation settlement

 H_t = Thickness of the compressible layer

 C_c = Co-efficient of consolidation

e₀ = initial void ratio

 p_0 = initial overburden pressure

 Δp = increase in overburden pressure

 λ_{oed} = Oedometer correction factor

 d_f = depth factor

 d_r = Rigidity factor

CHAPTER - V

5.0 SOIL PROFILE AND & RECOMMENDATION

From the exploratory bore holes at the site it is observed that sub soil formation at this site consists of cohesionless formation at ground surface and highly weathered decomposed product of rock below. Details of the formations along with the "N" values are shown in the field bore log data sheets.

Based on calculation the following bearing capacities are recommended:

SBC for Open foundation							
Depth	(ton/m ²)						
(m) from							
EGL							
1.50	19.5						
2.00	23.0						

* Detail calculations are shown in the subsequent pages. However, any other alternative solutions may be suitably adopted based on these soil data and with any modified intermetation of geo-technical expert.

Sentor

(A Maiti) (M.E. Soil Mech. and Fdn. Engg.) (Chartered Engineer)

CALCULATION OF BEARING CAPACITY FOR SHALLOW FOUNDATIONS FROM SHEAR FAILURE CONSIDERATION

			-	FRO.	<u>M SH</u>	EAR	FAIL	JKE C	ONS.	IDERA	110	N			
Bearin	g cap	pacity of	f found	ation	of dif	ferent	sizes o	f foun	dation	at diffe	erent c	lept	h		
As per	IS:6	403 - 198	1 Cl. 5.	1.2											
In case	e of G	General :	shear fa	ailure											
q _{net safe}	=1/I	F[CN _c S	$d_{ci_{c}} + q$	I(N ₉ -1)S _q d _q i	_q + 0.5	5BγN _y S	,d _y i _y R _w	']						
In case	e of L	ocal she	ear failu	ıre .	• •										
G net safe	= 1/	F[0.67{C	CN',S,d	$i_{c1} + c$	a(N'1	l)S _a d _a	i _a + 0.5	BγN',S	,d,i,R,	.'I					
Consid	lerin	g the w	orst cas	e as f	ullv si	ibmer	sed i.e.	water	table	raises u	pto th	ne gr	oun	d surface	
Where	a.	$b = c_{at} = 0$	Safe bea	aring	capac	itv			tubic .		Pro u	6.		a barrace	
	C = C	Cohesior	ı	0		,	B = W	idth of	f the fo	unđati	on '				
	y = Bulk unit weight														
	N N	N = B	earing c	anaci	v facto	ors	đđ (1 = D	enth f	actors					
			To		.,		: : : :	- I- a	cptil I	. (_				
	ס _{כי} , ס _{קי}	$S_{\gamma} = Sn$	аре гас торе	ctors	102 10	01) C	1 _c , 1 _q , 1	r = Incl		n factor	S				
	Shan	PE FAC	TOK5	(15:04 n	£03-19	<u>81), C</u>	lause o	.1. <i>2</i> .1,	table-2			S		T	
		e of fou	a obvio		ļ	C			<u>9</u> 1.00			- ³ γ		4	
	$\frac{1}{1}$ Ro	ctanglo	is strip		1	1.00 +0.2/B	(1)	1	1.00	/1)	1.0	1.00	(1)	-	
	$\frac{1}{10}$ Ka	liare				1 30	/ L)		1 20	/ L)	1-0	0.80	L)	-	
	v) Ci	rcular				1.30		<u> </u>	1.20			0.60		-	
	DEPI	TH FAC	TORS	(15:64	1 103-19	181), C	lause 5	0.1.2.2]	
Г		d		1+0	2(D/	B)sar	(N_{1})					1			
-				for a	$\frac{2(D)}{D < 10^6}$	$\frac{D}{2} = 1$	$\frac{1}{1}$	100 1	+ 0.1/17	(P)cord	NI	-			
					- 10	- 1		10 - 1	+ 0.1(D	() D)SQI					
		dγ		for a	$\Phi < 10^{\circ}$	= 1	for $\Phi >$	$10^{\circ} = 1$	+ 0.1(D	_f /B)sqr	Νφ]			
Now,		C =		0	t/m*	γ=	2.000	t/m [°]		SqN _Φ =	1.963				
		Φ =		3	36	γ _{sub} ≝	1.000	t/m°		C'=	0				
Bearing	g Caj	pacity fa	actors a	s per	IS:640	3-198	1 Table	1 Claı	ıse 5.1	.1					
		BCF	ectors	Ger	failuer f			cal Shear failuer			1 m.				
				ļ											
		N	c=		49.31	6		21.846							
		N	=		3 6.2 8	}	-	11.475							
		N	γ=		53.15	156 11.930									
Using th	e Fac	tor of Saf	ety =	6						-					
of	(m	of ton	of ion											q _{net safe}	
lati	•	ape dati	pth dati		01	6		D.	- c1- C-		Incl	inat	ion	from	SBC
o un		Sh	De	Kw	Sn	аре га	ctors	De	ptn ra	ctors	fa	ctor	s	GSFailure	T/m ²
9 9		fo	fo											t/m ²	
В	L				S _c	Sq	Sy	d _c	dq	d _y	i _c	i _q	i,		
1.50	1.50		1.50	0.50	1.30	1.20	0.80	1.39	1.20	1.20				19.02	19.02
2.00	2.00		1.50	0.50	1.30	1.20	0.80	1.29	1.15	1.15				20.27	20.27
2.50	2.50		1.50	0.50	1.30	1.20	0.80	1.24	1.12	1.12				21.73	21.73
3.00	3.00		1.50	0.50	1.30	1.20	0.80	1.20	1.10	1.10				23.30	23.30
2.00	2.00		2.00	0.50	1.30	1.20	0.80	1.52	1.20	1.20				24.31	24.01
2.00 2	2.00	Square	2.00	0.50	1.30	1.20	0.80	1.39	1.20	1.20				25.50	25.50
3.00	3.00		2.00	0.50	1.30	1.20	0.80	1.26	1.13	1.13				27.98	27.98
1.50	1.50		2.50	0.50	1.30	1.20	0.80	1.65	1.33	1.33				30.46	30.46
2.00	2.00		2.50	0.50	1.30	1.20	0.80	1.49	1.25	1.25				30.79	30.79
2.50 2	2.50		2.50	0.50	1.30	1.20	0.80	1.39	1.20	1.20				31.70	31.70
3.00	3.00		2.50	0.50	1.30	1.20	0.80	1.33	1.16	1.16				32.89	32.89

. •

GEOTECHNICAL INVESTIGATION FOR THE PROPOSED CONSTRUCTION OF G + 3 STORIED BUILDING IN PARMANENT CAMPUS OF CENTRAL UNIVERSITY OF JHARKHAND IN VILLAGE - CHERI/MANATU UNDER JHARKHAND										
	FIELD BORE LOG DATA SHEET									
Bore Hole No.BH-01 (Girls Hostel 3 Beded)Method of BoringAuger and RotaryWater TableDia of the Bore Hole150 mm							2.50m bgl			
Date of C	Commencement 19/02/2012				Date o	of Con	npletio	on	19/02/20	012
Date and	DESCRIPTION	SYMBOL	DEP	ГН		SPT		N-Value	Type of	Remarks
Depth		Same and	From(m)	To (m)	0-15	15-30	30-45		sampie	
	Dark brown sand mix with mooram and pabbles		0.50	-	-	-	-		DS	
	1.45m		1.00	1.45	5	17	20	37	SPT/DS	
	Light yellow brown patches coarse sand mix with gravels and soft rock		2.00	2.37	18, 3 f pe:	0,50 b or 7cn netrati	n ion	>100	SPT/DS	
			(Termina	ation D	epth =	= 2.00	m)			
SPT - Sta	SPT - Standard Penetration Tests DS - Disturbed samples UDS - Undisturbed samples									

GEOTECHNICAL INVESTIGATION FOR THE PROPOSED CONSTRUCTION OF G + 3 STORIED BUILDING IN PARMANENT CAMPUS OF CENTRAL UNIVERSITY OF JHARKHAND IN VILLAGE - CHERI/MANATU UNDER KANKE BLOCK, DISTT RANCHI, JHARKHAND										
	FIELD BORE LOG DATA SHEET									
Bore Hol Method	le No. BH-02 (Girls Host of Boring Auger and Rotary	d)	Water Table			2.50m bgl				
Dia. of th	Te Bore Hole 150 mm				Date	of Con	nvletic	n	19/02/2	012
Date and	DESCRIPTION	SYMBOL DEPTH		TH	SPT			N-Value	Type of	Remarks
Depth			From(m)	To (m)	0-15	15-30	30-45		sample	
			0.50	-	-	-	-	-	DS	
	Reddish brown mooram		1.00	1.45	6	18	10	28	SPT/DS	
	2.10m		2.00	2.45	18	25	36	61	SP17DS	
	White grey soft rock with pices o gravels and boulder		2.50	2.54	50 blo pe	ows fo netrat	r 4cm ion	>100	SPT/DS	
			(Termina	ation D	 epth = 	 = 2.50 	 m)	- - - -		
			-							•
SPT - Standard Penetration Tests DS - Disturbed samples UDS - Undisturbed samples										

. 20

7

REPORT ON GEOTECHNICAL INVESTIGATION

A

FOR THE CONSTRUCTION OF THE PROPOSED G+3 STORIED <u>CENTRAL</u> <u>SCHOOL</u> IN PERMANENT CAMPUS OF CENTRAL UNIVERSITY OF JHARKHAND AT VILLAGE CHERI / MANATU, IN BLOCK - KANKE RANCHI

> SUBMITTED TO: O.S.D. PROJECT CENTRAL UNIVERSITY OF JHARKHAND CITY CENTRE OPP. CMPDI, KANKE ROAD RANCHI, JHARKHAND

EXECUTED BY:

JHARKHAND FOUNDATION CONSULTANTS Regd. Office: FLAT NO. 4-D (4TH FLOOR) LAXMI APPARTMENT OLD ARGORA ROAD, ARGORA RANCHI – 834002 Ph. – 9431389413 / 09931095033

221040260D

Yanc

Table of Contents

> CHAPTER I	
Introduction	1
CHAPTER II	
Project Details	2
CHAPTER III	
Laboratory Testings	3
CHAPTER IV	
Foundation Design & aspects	4-5
CHAPTER V	C.
Sub-Soil profile and recommendation	0
Calculation of bearing capacity	7
Field Bore Log data sheet	8-9

CHAPTER - I

1.0 INTRODUCTION:

- 1.1. In an attempt to facilitate the design of foundation structures for the construction of the proposed <u>Central School</u> in permanent campus of Central University of Jharkhand at village Cheri / Manatu, Block-Kanke, Ranchi, Jharkhand a subsoil investigation work was programmed and for this, the services of M/s. Jharkhand Foundation Consultants, Flat No. 4D (Forth Floor), Laxmi Apartment, Old Argora Road, Argora, Ranchi-834002.
- 1.2. The scope of the soil investigation consisted of making two nos. of bore holes for this proposed building.
- 1.3. The formation at the site is to be reported for various layers presented at their respective depth along with their thickness. This would also include the subsoil properties for each stratum so as to come up with the design parameters for designing foundations, the depth or foundation and the selection of type of foundation. As the ground water table location influences the bearing capacity of a foundation and the method of construction of a foundation at the site, its location has also to be found.
- 1.4. Soil samples both in disturbed and undisturbed condition wherever possible are to be collected. These samples would be different laboratory tests to obtain various properties of sub-soil formation.
- 1.5. The exploration of the sub-soil formation being limited to two nos. bore holes it is suggested that due weighted is given to the unexplored part of the area at the time of selecting design parameters.

Jharkhand Fourdation Consultan

CHAPTER - II

2.0 **PROJECT DETAILS:**

2.1. The fieldwork consisted of **two** nos. of bore hole at pre-determined location. The detail of fieldwork like depth of bore hole, date of the field work of site are presented below in tabular form:

Sl. No.	Bore Hole No.	Terminating Depth (M)	Date of commencement	Date of completion
1	BH-01	2.50	19/02/2012	19/02/2012
2	BH-02	2.00	19/02/2012	19/02/2012

The fieldwork also included collection of undisturbed samples, disturbed samples and conducting standard penetration tests at regular intervals. The bore holes of 150mm diameter (SX size) are sunk by hand auger boring. The field work was carried out as per IS: 1892.

2.2. Standard penetration tests were conducted in the bore hole at regular intervals as per IS: 2100 in bore hole using a split spoon sampler. The split spoon sampler used for this test advanced by driving with a monkey weighing 63.5kg, falling freely through 750mm. The soil specimens were preserved in polythene bags for logging purpose.

CHAPTER - III

3. LABORATORY TESTING:

No laboratory tests were conducted on the collected samples due to the presence of moorum, kankars and highly weathered decomposed product of rock.

Grain size analysis. Liquid Limit, Plastic Limit Tests. Bulk Density, Dry Density. Natural Moisture Content. Specific Gravity. Unconsolidated Undrained (UU) test. One dimensional consolidation test.

The tests were conducted as per relevant IS Specifications.

CHAPTER - IV

4.0 FOUNDATION DESIGN ASPECTS:

A suitable foundation for any structure should have an adequate factor of safety exceeding the bearing capacity of the supporting soils. Also the vertical movements due to compression of the soil should be within tolerable limit for the structure. The foundations in accordance with the recommendations herein will satisfy these criteria.

FOUNDATION DESIGN CRITERIA

The maximum permissible total settlement and differential for the foundation settlement is governed by the technical requirements of the structure.

BEARING CAPACITY OF OPEN FOUNDATION

Bearing capacity analysis for shallow foundations has been done in accordance with IS: 6403-1981. The following equation has been used for the analysis.

 $q_{net \ safe} = 1/F(CN_cS_cD_c + p(N_q-1)S_qD_q + 0.5B_{\gamma}N_{\gamma}S_{\gamma}D_{\gamma}R_w)$

Where q_{net safe} = Safe net bearing capacity of soil based on the shear failure criteria

- C = Cohesion of clay
- γ = Unit weight of soil
- p = Overburden pressure
- B = width of foundation

 R_w = Water table correction factor

GEOTEC	HNICAL INVESTIGAT L UNIVERSITY OF JHA	ION FOR THE ARKHAND IN	PROPOSI VILLAGE	ED CONST - CHERI/I JH/	RUCTION MANATU U ARKHAND	OF G + 3 NDER	STORIE	ED BUII	LDING KAN	IN PARN NKE BLOO	IANENT C. CK, DISTT.	AMPUS OF - RANCHI,
			FIELD	BORE	LOG DA	<u>ГА SHE</u>	ET					
Bore Hol	e No.	BH-01 (Ce	ntral Sch	nool)								
Method	of Boring	Auger and	Rotary				Water	Table	2		2.50m bg	1
Dia. of th	ne Bore Hole	150 mm										
Date of C	Commencement	19/02/201	2			Date of Completion				19/02/20)12	
Date and	DESCI	RIPTION		SYMBOL	DEP	TH	0.45	SPT	00.45	N-Value	sample	Kemarks
Depth	•			14.11.24.24A	From(m)	To (m)	0-15	15-30	30-45	<u> </u>	Buttipic	
	Reddish brown mo 0.5	ooram 50m	<u></u>		0.50	-	-	-	-	-	DS	
					1.00	1.45	14	17	19	36	SPT/DS	
	Brownish grey s	oft rock m	ix with		2.00	2.45	23	30	36	· 66	SPT/DS	
					2.50	2.53	50 blo pe	ows fo netrati	r 3cm ion 1	>100	SPT/DS	
					(Termina	ation D	epth =	- 2.50	(m)			
		•••			-							
											-	
SPT - St	andard Penetration	Tests		I	DS - Dist	urbed s	ample	s	UDS	- Undis	turbed sa	mples

GEOTEC CENTRA	HNICAL INVESTIGATION FOR THE PROPOSI LL UNIVERSITY OF JHARKHAND IN VILLAGE	ED CONS' - CHERI/ JH.	TRUCTION MANATU U ARKHAND	OF G + 3 JNDER	GEOTECHNICAL INVESTIGATION FOR THE PROPOSED CONSTRUCTION OF G + 3 STORIED BUILDING IN PARMANENT CAMPUS OF CENTRAL UNIVERSITY OF JHARKHAND IN VILLAGE - CHERI/MANATU UNDER KANKE BLOCK, DISTT RANCHI, JHARKHAND					AMPUS OF - RANCHI,
	FIELT) BORE	LOG DA	TA SHE	ET					
Bore Ho Method	le No. BH-02 (Central Sch of Boring Auger and Rotary	nool)	200 212		Water	r Table	2		2.50m bg	çl
Dia. of the Date of C	he Bore Hole 150 mm Commencement 19/02/2012				Date	of Con	npletio	on	19/02/2	012
Date and	DESCRIPTION	SYMBOL	DEP	TH		SPT	1	N-Value	lue Type of	Remarks
Depth			From(m)	To (m)	0-15	15-30	30-45		sample	
	Yellowish brown coarse sand mix with mooram		0.50		æ	-	-	-	DS	
			1.00	1.45	5	17	20	37	SPT/DS	
	White grey brown patches soft rock		2.00	2.34	18, 3 f pe	7, 50 b or 4cn netrati	lows n ion	>100	SPT/DS	
			(Termin	ation D	epth =	= 2.00	m)			
		-								
SPT - Sta	andard Penetration Tests	L	DS - Dist	urbed s	amples	لا ع	UDS	- Undist	urbed say	mples

9

Jharkhand Foundation Consultants

oundation

Panchi

6

E

REPORT ON GEOTECHNICAL INVESTIGATION FOR THE CONSTRUCTION OF THE PROPOSED G+3 STORIED <u>ACADEMIC</u> BUILDING-1 IN PERMANENT CAMPUS OF CENTRAL UNIVERSITY OF JHARKHAND AT VILLAGE CHERI / MANATU, IN BLOCK - KANKE RANCHI

A

SUBMITTED TO: O.S.D. PROJECT CENTRAL UNIVERSITY OF JHARKHAND CITY CENTRE OPP. CMPDI, KANKE ROAD

RANCHI, JHARKHAND

EXECUTED BY:

JHARKHAND FOUNDATION CONSULTANTS Regd. Office: FLAT NO. 4-D (4TH FLOOR) LAXMI APPARTMENT OLD ARGORA ROAD, ARGORA RANCHI – 834002 Ph. – 9431389413 / 09931095033

491-6

Table of Contents

> CHAPTER I	
Introduction	1
CHAPTER II	
Project Details	2
CHAPTER III	
Laboratory Testings	3
CHAPTER IV	
Foundation Design & aspects	4-5
CHAPTER V	C
Sub-Soil profile and recommendation	0
Calculation of bearing capacity	7
Field Bore Log data sheet	8-9

CHAPTER - I

1.0 INTRODUCTION:

- 1.1. In an attempt to facilitate the design of foundation structures for the construction of the proposed <u>Academic Building-1</u> in permanent campus of Central University of Jharkhand at village Cheri / Manatu, Block-Kanke, Ranchi, Jharkhand a subsoil investigation work was programmed and for this, the services of M/s. Jharkhand Foundation Consultants, Flat No. 4D (Forth Floor), Laxmi Apartment, Old Argora Road, Argora, Ranchi-834002.
- 1.2. The scope of the soil investigation consisted of making two nos. of bore holes for this proposed building.
- 1.3. The formation at the site is to be reported for various layers presented at their respective depth along with their thickness. This would also include the subsoil properties for each stratum so as to come up with the design parameters for designing foundations, the depth of foundation and the selection of type of foundation. As the ground water table location influences the bearing capacity of a foundation and the method of construction of a foundation at the site, its location has also to be found.
- 1.4. Soil samples both in disturbed and undisturbed condition wherever possible are to be collected. These samples would be different laboratory tests to obtain various properties of sub-soil formation.
- 1.5. The exploration of the sub-soil formation being limited to **two** nos. bore holes it is suggested that due weighted is given to the unexplored part of the area at the time of selecting design parameters.

Jharkhand Foundation Consultants

koundatio,

CHAPTER - II

2.0 PROJECT DETAILS:

2.1. The fieldwork consisted of **two** nos. of bore hole at pre-determined location. The detail of fieldwork like depth of bore hole, date of the field work of site are presented below in tabular form:

Sl. No.	Bore Hole No.	Terminating Depth (M)	Date of commencement	Date of completion
1	BH-01	2.00	20/02/2012	20/02/2012
2	BH-02	2.50	20/02/2012	20/02/2012

The fieldwork also included collection of undisturbed samples, disturbed samples and conducting standard penetration tests at regular intervals. The bore holes of 150mm diameter (SX size) are sunk by hand auger boring. The field work was carried out as per IS: 1892.

2.2. Standard penetration tests were conducted in the bore hole at regular intervals as per IS: 2131 in bore hole using a split spoon sampler. The split spoon sampler used for this test advanced by driving with a monkey weighing 63.5kg, falling freely through 750mm. The soil specimens were preserved in polythene bags for logging purpose.

CHAPTER - III

3. LABORATORY TESTING:

No laboratory tests were conducted on the collected samples due to the presence of moorum, kankars and highly weathered decomposed product of rock.

Grain size analysis. Liquid Limit, Plastic Limit Tests. Bulk Density, Dry Density. Natural Moisture Content. Specific Gravity. Unconsolidated Undrained (UU) test. One dimensional consolidation test.

The tests were conducted as per relevant IS Specifications.

CHAPTER - IV

4.0 FOUNDATION DESIGN ASPECTS:

A suitable foundation for any structure should have an adequate factor of safety exceeding the bearing capacity of the supporting soils. Also the vertical movements due to compression of the soil should be within tolerable limit for the structure. The foundations in accordance with the recommendations herein will satisfy these criteria.

FOUNDATION DESIGN CRITERIA

The maximum permissible total settlement and differential for the foundation settlement is governed by the technical requirements of the structure.

BEARING CAPACITY OF OPEN FOUNDATION

Bearing expacity analysis for shallow foundations has been done in accordance with IS: 6403-1981. The following equation has been used for the analysis.

 $q_{\text{net safe}} = 1/F(CN_cS_cD_c + p(N_q-1)S_qD_q + 0.5B_{\gamma}N_{\gamma}S_{\gamma}D_{\gamma}R_w)$

Where q_{net safe} = Safe net bearing capacity of soil based on the shear failure criteria

- C = Cohesion of clay
- γ = Unit weight of soil
- p = Overburden pressure
- B = width of foundation
- R_w = Water table correction factor

F = Factor of safety

 N_{c} , N_{q} , N_{γ} = Bearing capacity factors

 $S_{c,} S_{q,} S_{\gamma}$ = Shape factors

 D_c , D_q , D_γ = Depth factors

All the Bearing capacity factors, Shape factors and depth factors has been considered as IS:6403-1981, Table -1 clause - 5.1.1, 5.1.2.1 and 5.1.2.2 respectively.

SETTLEMENT ANALYSIS FOR SHALLOW FOUNDATION

Settlement calculation has been done as per IS: 8009 (Part-1)-1976.

Immediate settlement considered as per clause 9.2.3.2

 $S_i = (pB(1-\mu^2)I)/E$

Where μ = Piosson's ratio = 0.5 for clay

I = Influence factor

Second as a clause 9.2.2.2

 $S_c = Ht/(1+e_0) \ge C_c \log_{10} ((p_0 + \Delta p)/p_0) \ge \lambda_{oed} \ge d_f \ge d_r$

Where S_c = Consolidation settlement

 H_t = Thickness of the compressible layer

 C_c = Co-efficient of consolidation

 e_0 = initial void ratio

 p_0 = initial overburden pressure

 Δp = increase in overburden pressure

 λ_{oed} = Oedometer correction factor

 d_f = depth factor

d_r = Rigidity factor

CHAPTER - V

5.0 SOIL PROFILE AND & RECOMMENDATION

From the exploratory bore holes at the site it is observed that sub soil formation at this site consists of cohesionless formation at ground surface and highly weathered decomposed product of rock below. Details of the formations along with the "N" values are shown in the field bore log data sheets.

Based on calculation the following bearing capacities are recommended:

SBC for Open foundation					
Depth	(ton/m ²)				
(m) from					
EGL					
1.50	18.0				
2.00	22.0				

* Detail calculations are shown in the subsequent pages. However, any other alternative solutions may be suitably adopted based on these soil data and with any modified interpretation of geo-technical expert.

(A Maiti) (M.E. Soil Mech. and Fdn. Engg.) (Chartered Engineer)

CALCULATION OF BEARING CAPACITY FOR SHALLOW FOUNDATIONS <u>FROM SHEAR FAILURE CONSIDERATION</u>

Beari	ng cap	acity of	founda	ation	of diff	different sizes of foundation at different depth									
As pe	er 15:04	103-1981	Door fo	iluro											
In cas	e oi G	eneral s	near ia	nure			DNC	1 · D ·							
q _{net sat}	e = 1/F	CN _c S _c	$d_c l_c + q$	(N _q -1	$S_q a_{q^1}$	+ 0.5	ΒγΙΝγSγ	a _{yly} K _w	1						
In cas	e of L	ocal she	ar failu	re											
q _{net sai}	$r_{e} = 1/1$	F[0.67{C	N' _c S _c d _c	i _{c)} + q	(N' _q -1)S _q d _q i	_q + 0.5E	βγN' _γ S _γ	d _y i _y R _w ']					
Consi	iderin	g the wo	orst case	e as fi	illy su	bmer	sed i.e.	water	table r	aises u	pto th	e gr	oun	d surface	
Wher	e q _r	et safe = S	Safe bea	ring	capaci	ty									
	C = C	ohesion	l				B = Wi	dth of	the fo	undatio	n				
	γ = Bι	ılk unit	weight												
	N_c , N_c	$_{\gamma} N_{\gamma} = Be$	earing ca	apacit	y facto	rs	d _c ,d _q ,d	$l_{\gamma} = D d$	epth fa	actors					
	S _c , S _q ,	$S_{\gamma} = Sha$	ape Fac	tors			i _c , i _q , i _y	= Incl	inatior	n factors	5				
	SHA	PE FAC	TORS	(IS:64	03-19	81), Cl	lause 5.	1.2.1,	able-2						
	Shap	e of fou	ndatio	n		s _c			sq			sγ			
	i)Co	ntinuou	s strip			1.00			1.00		1	1.00			
	ii) Ra	ctangle			1.	+0.2(B)	/L)	1	+0.2(B/	′L)	1-0.	4 (B/	L)		
	iii) Sq	uare				1.30			1.20		(0.80			
	iv) Ci	rcular				1.30			1.20		().60			
	DEPI	H FAC	TOKS	(15:64	103-19	o1), C	lause 5	.1.2.2							
		ďc		1+0.	2(D/I)	3)sqrt	(N_{Φ})								
		dq		for 4	¢ < 10°	= 1	for $\Phi >$	$10^0 = 1$	+ 0.1(D	_f /B)sqrt	Nφ				
		d,		for ¢	$10^{\circ} < 10^{\circ}$	=1	for $\Phi >$	$10^0 = 1$	+ 0.1(D	_f /B)sqrt	NΦ				
Now	,	C =		0	t/m ²	γ=	1.925	t/m ³		SqN₀≈	1.963				
		Φ =		3	86	$\gamma_{sub} =$	0.925	t/m ³		C'=	0				
Beari	ng Car	oacity fa	actors as	s per l	IS:640	3-1981	Table	1 Clau	se 5.1.	1					
				Gen	eral S	hear	Lo	cal She	ear	ľ.					
		BC Fa	leors		failue	r	1	ailuer					,		
		N	=		49.316	5		21.846							
		N			36.28			11 475							
		N	9		52 154			11 020							
	1. F		Υ¯		55.150	,		11.930							
Using	the Fac	tor of Sat	ety =	0											
2e 0		e o tio	th o tio:											q _{net safe}	
Siz	uaa	har nda	ep(nda	R _w	Sha	pe fa	ctors	De	pth fac	ctors	Incli	inat	ion	from	SBC
	no	S	Dino								f fa	ctor	s		1/ m ⁻
			Ŧ								<u> </u>			t/m ⁻	
B	L 150		1 50	0.50	5 _c	5 _q	- ⁵ y	a _c	$\frac{a_q}{1.20}$	a _y	1 _c	1 _q	1 _y	17.83	17.83
2.00	2.00		1.50	0.50	1.30	1.20	0.80	1.29	1.15	1.15				19.06	19.06
2.50	2.50		1.50	0.50	1.30	1.20	0.80	1.24	1.12	1.12				20.47	20.47
3.00	3.00		1.50	0.50	1.30	1.20	0.80	1.20	1.10	1.10				21.99	21.99
1.50	1.50		2.00	0.50	1.30	1.20	0.80	1.52	1.26	1.26				22.92	22.92
2.00	2.00	,	2.00	0.50	1.30	1.20	0.80	1.39	1.20	1.20				23.78	23.78
2.50	2.50	Square	2.00	0.50	1.30	1.20	0.80	1.31	1.16	1.16				24.97	24.97
3.00	3.00		2.00	0.50	1.30	1.20	0.80	1.26	1.13	1.13				26.33	26.33
1.50	1.50		2.50	0.50	1.30	1.20	0.80	1.65	1.33	1.33				28.44	28.44
2.00	2.00		2.50	0.50	1.30	1.20	0.80	1.49	1.25	1.25				28.82	28.82
2.50	2.50		2,50	0.50	1.30	1.20	0.80	1.39	1.20	1.20				29.72	29.72
3.00	3.00		2.50	0.50	1.30	1.20	0.60	1.33	1.10	1.10				50.89	20.89

Jharkhand Foundation Consultants

221040260F

		FIE	LD BORE	LOG DA	ГА SHE	ЕТ					
Bore Ho	e No.	BH-01 (Academi	c Building)		2					
Method	of Boring	Auger and Rotar	у	, ,		Water	Table	2		2.50m bg	1
Dia. of tl	ne Bore Hole	150 mm									
Date of C	Commencement	20/02/2012			Date o	of Con	20/02/20	20/02/2012			
Date and	DESC	RIPTION	SYMBOL	DEP	TH	0.15	SPT	20.45	N-Value	ample	Kemar
Depth			a the state of the	From(m)	To (m)	0-15	15-30	30-45			
	Reddish mooram			0.50	-	-	-	-	-	DS	
	1.	00m		1.00	1.45	4	10	20	30	SPT/DS	
	White grey soft ro	ck		2.00	2.21	35, 5 6cm	0 blow penetr	vs for ation	>100	SPT/DS	
				(Termina	ation D	epth =	= 2.00	m)			
			1								

	·····										
GEOTEC CENTRA	HNICAL INVESTIGAT AL UNIVERSITY OF JH	FION FOR THE PROPOSI ARKHAND IN VILLAGE	ED CONST - CHERI/I JH/	RUCTION MANATU U ARKHAND	OF G + 3 NDER	STORII	ED BUI	LDING KAN	IN PARN NKE BLO	AANENT C. CK, DISTT.	AMPUS OF - RANCHI,
		FIELI	BORE	LOG DA'	ГА SHE	ЕТ					
Bore Ho	le No.	BH-02 (Academic	Building)							
Method	of Boring	Auger and Rotary	0	·		Water	Table	9		2.50m bg	1
Dia. of th	he Bore Hole	150 mm									
Date of O	Commencement	20/02/2012				Date	of Con	npletio	on	20/02/20)12
Date and	DESC	RIPTION	SYMBOL	DEP	TH		SPT		N-Value	Type of	Remarks
Depth				.From(m)	To (m)	0-15	15-30	30-45		sample	
	Reddish brown m	ooram with pebbles		0.50	-	-	-	-	-	DS	
				1.00	1.45	10	12	15	27	SPT/DS	
	1.	50m	33 X						ļ		
	Light grey soft roc	k mix with graveles		2.00	2.45	18	27	36	63	SPT/DS	
				2.50	2.55	pe	netrati	r 5cm ion	>100	SPT/DS	
				(Termina	ation D	epth = 	= 2.50	m)			
SDT St	andard Penetration	Tests		DS - Diet	urbed	ample			- Undist	urbed so	mples
Uld	made a source and the second			~~ 10101			-	220	~		

221040260F

.

REPORT ON GEOTECHNICAL INVESTIGATION FOR THE CONSTRUCTION OF THE PROPOSED G+3 STORIED <u>ACADEMIC</u> BUILDING-2 IN PERMANENT CAMPUS OF CENTRAL UNIVERSITY OF JHARKHAND AT VILLAGE CHERI / MANATU, IN BLOCK - KANKE RANCHI

A

SUBMITTED TO: O.S.D. PROJECT CENTRAL UNIVERSITY OF JHARKHAND CITY CENTRE OPP. CMPDI, KANKE ROAD RANCHI, JHARKHAND

EXECUTED BY:

JHARKHAND FOUNDATION CONSULTANTS Regd. Office: FLAT NO. 4-D (4TH FLOOR) LAXMI APPARTMENT OLD ARGORA ROAD, ARGORA RANCHI – 834002 Ph. – 9431389413 / 09931095033

Table of Contents

> CHAPTER I	
Introduction	1
CHAPTER II	
Project Details	2
CHAPTER III	
Laboratory Testings	3
CHAPTER IV	
Foundation Design & aspects	4-5
CHAPTER V	6
Sub-Soil profile and recommendation	0
Calculation of bearing capacity	7
Field Bore Log data sheet	8-9

CHAPTER - I

1.0 INTRODUCTION:

- 1.1. In an attempt to facilitate the design of foundation structures for the construction of the proposed <u>Academic Building-2</u> in permanent campus of Central University of Jharkhand at village Cheri / Manatu, Block-Kanke, Ranchi, Jharkhand a subsoil investigation work was programmed and for this, the services of M/s. Jharkhand Foundation Consultants, Flat No. 4D (Forth Floor), Laxmi Apartment, Old Argora Road, Argora, Ranchi-834002.
- 1.2. The scope of the soil investigation consisted of making two nos. of bore holes for this proposed building.
- 1.3. The formation at the site is to be reported for various layers presented at their respective depth along with their thickness. This would also include the subsoil properties for each stratum so as to come up with the design parameters for designing foundations, the deput of foundation and the selection of type of foundation. As the ground water table location influences the bearing capacity of a foundation and the method of construction of a foundation at the site, its location has also to be found.
- 1.4. Soil samples both in disturbed and undisturbed condition wherever possible are to be collected. These samples would be different laboratory tests to obtain various properties of sub-soil formation.
- 1.5. The exploration of the sub-soil formation being limited to two nos. bore holes it is suggested that due weighted is given to the unexplored part of the area at the time of selecting design parameters.

Jharkhand Foundation Consultant

CHAPTER - II

2.0 PROJECT DETAILS:

.

2.1. The fieldwork consisted of **two** nos. of bore hole at pre-determined location. The detail of fieldwork like depth of bore hole, date of the field work of site are presented below in tabular form:

Sl. No.	Bore Hole No.	Terminating Depth (M)	Date of commencement	Date of completion
1	BH-01	3.00	21/02/2012	21/02/2012
2	BH-02	2.50	21/02/2012	21/02/2012

The fieldwork also included collection of undisturbed samples, disturbed samples and conducting standard penetration tests at regular intervals. The bore holes of 150mm diameter (SX size) are sunk by hand auger boring. The field work was carried out as per IS: 1892.

2.2. Standard penetration tests were conducted in the bore hole at regular intervals as per 15, 2131 in bore hole using a split spoce ampler. The split spoon sampler used for this test advanced by driving with a monkey weighing 63.5kg, falling freely through 750mm. The soil specimens were preserved in polythene bags for logging purpose.

CHAPTER - III

3. LABORATORY TESTING:

No laboratory tests were conducted on the collected samples due to the presence of moorum, kankars and highly weathered decomposed product of rock.

Grain size analysis. Liquid Limit, Plastic Limit Tests. Bulk Density, Dry Density. Natural Moisture Content. Specific Gravity. Unconsolidated Undrained (UU) test. One dimensional consolidation test.

The tests were conducted as per relevant IS Specifications.

CHAPTER - IV

4.0 FOUNDATION DESIGN ASPECTS:

A suitable foundation for any structure should have an adequate factor of safety exceeding the bearing capacity of the supporting soils. Also the vertical movements due to compression of the soil should be within tolerable limit for the structure. The foundations in accordance with the recommendations herein will satisfy these criteria.

FOUNDATION DESIGN CRITERIA

The maximum permissible total settlement and differential for the foundation settlement is governed by the technical requirements of the structure.

BEARING CAPACITY OF OPEN FOUNDATION

Bearing capacity analysis for shallow foundations has been done in accordance with IS: 6403-1981. The following equation has been used for the analysis.

 $q_{\text{net safe}} = 1/F(CN_cS_cD_c + p(N_q-1)S_qD_q + 0.5B_{\gamma}N_{\gamma}S_{\gamma}D_{\gamma}R_w)$

Where q_{net safe} = Safe net bearing capacity of soil based on the shear failure criteria

- C = Cohesion of clay
- γ = Unit weight of soil
- p = Overburden pressure
- B = width of foundation
- R_w = Water table correction factor

F = Factor of safety

 $N_{c,} N_{q,} N_{\gamma}$ = Bearing capacity factors

 $S_{c,} S_{q,} S_{\gamma}$ = Shape factors

 D_c , D_q , D_γ = Depth factors

All the Bearing capacity factors, Shape factors and depth factors has been considered as IS:6403-1981, Table -1 clause - 5.1.1, 5.1.2.1 and 5.1.2.2 respectively.

SETTLEMENT ANALYSIS FOR SHALLOW FOUNDATION

Settlement calculation has been done as per IS: 8009 (Part-1)-1976.

Immediate settlement considered as per clause 9.2.3.2

 $S_i = (pB(1-\mu^2)I)/E$

Where μ = Piosson's ratio = 0.5 for clay

I = Influence factor

Consolidation settlement considered as per clause 9.2.2.2

 $S_c = Ht/(1+e_0) \ge C_c \log_{10} ((p_0 + \Delta p)/p_0) \ge \lambda_{oed} \ge d_f \ge d_r$

Where S_c = Consolidation settlement

 H_t = Thickness of the compressible layer

 C_c = Co-efficient of consolidation

e₀ = initial void ratio

 p_0 = initial overburden pressure

 Δp = increase in overburden pressure

 λ_{oed} = Oedometer correction factor

- d_f = depth factor
- $d_r = Rigidity factor$

CHAPTER - V

5.0 SOIL PROFILE AND & RECOMMENDATION

From the exploratory bore holes at the site it is observed that sub soil formation at this site consists of cohesionless formation at ground surface and highly weathered decomposed product of rock below. Details of the formations along with the "N" values are shown in the field bore log data sheets.

Based on calculation the following bearing capacities are recommended:

SBC for Open foundation					
Depth	(ton/m ²)				
(m) from					
EGL					
1.50	18.0				
2.00	22.0				

* Detail calculations are shown in the subsequent pages. However, any other alternative solutions may be suitably adopted based on these soil data

and with any modified interpretation of geo-technical expert.

(A Maiti) (M.E. Soil Mech. and Fdn. Engg.) (Chartered Engineer)

<u>.</u>...

CALCULATION OF BEARING CAPACITY FOR SHALLOW FOUNDATIONS FROM SHEAR FAILURE CONSIDERATION

				FRO	<u>M SH</u>	EAR	FAILL	<u>IRE C</u>	ONSI	DERA	<u>IOIT.</u>	N			
Beari	Bearing capacity of foundation of different sizes of foundation at different depth														
As per I5:6403-1981 Cl. 5.1.2															
In cas	In case of General shear failure														
q _{net sat}	_{fe} =1/H	F[CN _c S _c	d _c i _c + q	(N _q -1)S _q d _q i	4 + 0.5	ΒγΝ _γ S _γ	d _r i _r R _w ']						
In cas	se of L	ocal she	ear failu	ire											
q net sat	_{fe} = 1/	F[0.67{C	CN' _c S _c d	$i_{c} + c_{c}$	[(Ν' _q -1)S _q d _q i	_q + 0.5F	βγN',S	d _y i _y R _w	']					
Cons	iderin	g the wo	orst cas	e as fi	ally su	bmer	sed i.e.	water	table 1	aises u	pto th	e gr	oun	d surface	
Wher	e q	net safe = S	Safe bea	aring	capaci	ty						•			
C = Cohesion				•	-	-	B = W	idth of	the fo	undatio)n				
	$\gamma = B_1$	ulk unit	weight												
	N _c , N	$N_{\rm r} = B_{\rm r}$	earing c	apacit	y facto	rs	d _c ,d _o ,d	$l_{y} = D$	epth fa	actors					
	SS	S = Sh	- ane Fac	tors	-		iii.	, = Incl	- inatior	1 factors	\$				
	SHA	PE FAC	TORS	(15.64	03-19	81). C	lause 5	121.	table-2	1 140101	5				
	Shap	e of fou	indatio	n		S _c			S _a	·		S _v]	
	i)Co	ntinuou	is strip			1.00		1.00			1.00	· · · · -	Ì		
	ii) Ra	ctangle			1.	+0.2(B)	/L)	1+0.2(B/L)			1-0.	4(B/	'L)		
	iii) Sc	uare				1.30			1.20	· · · · · · · · · · · · · · · · · · ·	(0.80			
	iv) Ci	ircular				1.30			1.20		(0.60			
	DELI	FH FAC	TORS	(15:64	103-19	81), C	lause 5	1.2.2							
		d _c		1+0.	2(D/1	3)sqrt	(N_{Φ})								
		d,		for (or $\Phi < 10^{\circ} = 1$ for $\Phi > 10^{\circ} = 1 + 0.1(D_f/B) \text{sqrtN}_{\Phi}$										
		 d.		for 6	₽ < 10 ⁰	= 1	for $\Phi >$	$10^0 = 1$	+ 0.1(D	(/B)sart	No				
Now $C = 0$			$0 \text{ t/m}^2 \gamma = 1.950 \text{ t/m}^3 \text{ SaN}_{\oplus} = 1.963$												
	,	Φ =			36	γμ=	0.950	, t/m ³		C'=	0				
Beari	no Ca	nacity fa	actors a	s ner		3-1981	l Table	í 1 Clar	ise 5.1	1	U				
Deur				Ger	ieral S	hear	Lo	cal Sh	Par	1					
		BC Fa	actors		failue	r		failuer			-				
		N			49.316	5		21.846							
		N	=		36.28			11.475							
		N	q		53 156 11 930										
¥ laina	the Fee		γ io.tau	6	00.100	, 		11.900							
Using H		Lor or Sa	ery -			<u> </u>		1	· · · · ·						
2 e C		pe o	th c											Q net safe	ana
ŝ	na	haj nda)ep ndå	R _w	Sha	ipe fa	ctors	De	pth fa	ctors	Incl	inat	ion	rrom CSEailura	
		S	D								14	Ctor	5		1/ m-
	_ 					- c	<u> </u>							ψm	
B	L 150		1 50	0.50	130	$\frac{S_q}{1.20}$	0.80	1 39	$\frac{u_q}{1.20}$	1.20	1 _C	1 _q	Iy	18.23	18 23
2.00	2.00		1.50	0.50	1.30	1.20	0.80	1.29	1.15	1.15				19.46	19.46
2.50	2.50		1.50	0.50	1.30	1.20	0.80	1.24	1.12	1.12				20.89	20.89
3.00	3.00		1.50	0.50	1.30	1.20	0.80	1.20	1.10	1.10				22.42	22.42
1.50	1.50		2.00	0.50	1.30	1.20	0.80	1.52	1.26	1.26				23.45	23.45
2.00	2.00	Sauaro	2.00	0.50	1.30	1.20	0.80	1.39	1.20	1.20				24.30	24.3 0
2.50	2.50	oquare	2.00	0.50	1.30	1.20	0.80	1.31	1.16	1.16				25.51	25.51
3.00	3.00		2.00	0.50	1.30	1.20	0.80	1.26	1.13	1.13				26.88	26.88
1.50	1.50		2.50	0.50	1.30	1.20	0.80	1.65	1.33	1.33				29.12	29.12
2.00	2.00		2.50	0.50	1.30	1.20	0.80	1.49	1.25	1.25				29.47	29.47
2.00	3.00	╞	2.50	0.50	1.30	1.20	0.00	1.37	1.20	1.20				31 56	31 56
0.00	0.00		L.JU	0.001	1.00	1 2.20	0.00	2.00						01.00	01.00

-

Jharkhand Foundation Consultants

Foundation

Panch

GEOTECHNICAL INVESTIGATION FOR THE PROPOSE CENTRAL UNIVERSITY OF JHARKHAND IN VILLAGE	D CONS - CHERI/I JHJ	TRUCTION MANATU U ARKHAND	OF G + 3 INDER	STORII	ED BUII	LDING KAN	IN PARN NKE BLO	IANENT C CK, DISTT.	AMPUS OF - RANCHI,
FIELD	BORE	LOG DA	TA SHE	ET					
Bore Hole No. BH-01 (Academic Hole No. Method of Boring Auger and Rotary Diamondary 150	Building	Part -2)		Water	r Table	2		2.50m bg	;1
Date of Commencement 21/02/2012				Date	of Con	npletic	on	21/02/2	012
Date and DESCRIPTION	SYMBOL	DEP	TH		SPT		N-Value	Type of	Remarks
Depth	595 (A)	· From(m)	To (m)	0-15	15-30	30-45	· · ·	sample	
Yellowish grey sandy silt mix with		0.50	-	-	-	-	-	DS	
1.45m	<u> </u>	1.00	1.45	7	10	19	29	SPT/DS	
Light grey decomposed soft rock mix		2.00	2.45	10	18	23	41	SPT/DS	
with graveles and pabbles		3.00	3.19	4cm	o blow penetr	ation	>100	SPT/DS	
		(Termina	ation D	epth =	= 3.00	m)			
· · · · ·	-								
SPT - Standard Penetration Tests		DS - Dist	urbed s	amples	5	UDS -	- Undist	urbed sa	nples

GEOTECHNICAL INVESTIGATION FOR THE PROPOSE CENTRAL UNIVERSITY OF JHARKHAND IN VILLAGE	ED CONST - CHERI/I JH/	TRUCTION MANATU U ARKHAND	OF G + 3 NDER	STORIE	ED BUII	LDING KAN	IN PARN JKE BLO	IANENT C CK, DISTT.	AMPUS OF - RANCHI,
FIELD	BORE	LOG DA	TA SHE	ET					
Bore Hole No.BH-02 (Academic IMethod of BoringAuger and Rotary	Building	Part -2)		Water	Table	2		2.50m bg	;1
Dia. of the Bore Hole 150 mm Date of Commencement 21/02/2012				Date o	of Con	npletic	on	21/02/20	012
Date and DESCRIPTION	SYMBOL	DEP	TH		SPT		N-Value	Type of	Remarks
Depth		From(m)	To (m)	0-15	15-30	30-45		sample	
Reddish brown sandy silt mix with		0.50	-	-	-	-	-	DS	
mooram	/	1.00	1.45	5	16	19	35	SPT/DS	
Light brown decomposed soft rock mix		2.00	2.45	10	17	29	46	SPT/DS	
with graveles and pabbles		2.50	2.71	29, 5 6cm	0 blow penetr	vs for ation	>100	SPT/DS	
		(Termina	ation D	i epth =	ı = 2.50	m)			
			-						
								-	
SPT - Standard Penetration Tests		DS - Dist	urbed s	amples	s	UDS	- Undisi	urbed sa	mples

٦

221040260H

9

•••

REPORT ON

A

GEOTECHNICAL INVESTIGATION FOR THE CONSTRUCTION OF THE PROPOSED G+3 STORIED <u>SCHOOL OF</u> <u>MANAGEMENT</u> IN PERMANENT CAMPUS OF CENTRAL UNIVERSITY OF JHARKHAND AT VILLAGE CHERI / MANATU, IN BLOCK - KANKE RANCHI

SUBMITTED TO: O.S.D. PROJECT CENTRAL UNIVERSITY OF JHARKHAND CITY CENTRE OPP. CMPDI, KANKE ROAD RANCHI, JHARKHAND

EXECUTED BY:

JHARKHAND FOUNDATION CONSULTANTS Regd. Office: FLAT NO. 4-D (4TH FLOOR) LAXMI APPARTMENT OLD ARGORA ROAD, ARGORA RANCHI – 834002 Ph. – 9431389413 / 09931095033

Table of Contents

> CHAPTER I	
Introduction	1
CHAPTER II	
Project Details	2
CHAPTER III	
Laboratory Testings	3
CHAPTER IV	
Foundation Design & aspects	4-5
CHAPTER V	
Sub-Soil profile and recommendation	
Calculation of bearing capacity	7
Field Bore Log data sheet	8-9

CHAPTER - I

1.0 INTRODUCTION:

- 1.1. In an attempt to facilitate the design of foundation structures for the construction of the proposed <u>School of Management</u> in permanent campus of Central University of Jharkhand at village Cheri / Manatu, Block-Kanke, Ranchi, Jharkhand a subsoil investigation work was programmed and for this, the services of M/s. Jharkhand Foundation Consultants, Flat No. 4D (Forth Floor), Laxmi Apartment, Old Argora Road, Argora, Ranchi-834002.
- 1.2. The scope of the soil investigation consisted of making two nos. of bore holes for this proposed building.
- 1.3. The formation at the site is to be reported for various layers presented at their respective depth along with their thickness. This would also include the subsoil properties for each stratum so as to come up with
- the decign parameters for designing founciations, the depth of foundation and the selection of type of foundation. As the ground water table location influences the bearing capacity of a foundation and the method of construction of a foundation at the site, its location has also to be found.
- 1.4. Soil samples both in disturbed and undisturbed condition wherever possible are to be collected. These samples would be different laboratory tests to obtain various properties of sub-soil formation.
- 1.5. The exploration of the sub-soil formation being limited to two nos. bore holes it is suggested that due weighted is given to the unexplored part of the area at the time of selecting design parameters.

Jharkhand Foundation Consultant

indation

Panch

CHAPTER - II

2.0 PROJECT DETAILS:

2.1. The fieldwork consisted of **two** nos. of bore hole at pre-determined location. The detail of fieldwork like depth of bore hole, date of the field work of site are presented below in tabular form:

Sl. No.	Bore Hole No.	Terminating Depth (M)	Date of commencement	Date of completion
1	BH-01	2.00	21/02/2012	21/02/2012
2	BH-02	4.00	21/02/2012	21/02/2012

The fieldwork also included collection of undisturbed samples, disturbed samples and conducting standard penetration tests at regular intervals. The bore holes of 150mm diameter (SX size) are sunk by hand auger boring. The field work was carried out as per IS: 1892.

2.2. Standard penetration tests were conducted in the bore hole at regular intervals as per IS: 2131 in bore hole using a split spoon sampler. The split spoon sampler used for this test advanced by driving with a monkey weighing 63.5kg, falling freely through 750mm. The soil specimens were preserved in polythene bags for logging purpose.

CHAPTER - III

3. LABORATORY TESTING:

No laboratory tests were conducted on the collected samples due to the presence of moorum, kankars and highly weathered decomposed product of rock.

Grain size analysis. Liquid Limit, Plastic Limit Tests. Bulk Density, Dry Density. Natural Moisture Content. Specific Gravity. Unconsolidated Undrained (UU) test. One dimensional consolidation test.

The tests were conducted as per relevant IS Specifications.

<u>CHAPTER – IV</u>

4.0 FOUNDATION DESIGN ASPECTS:

A suitable foundation for any structure should have an adequate factor of safety exceeding the bearing capacity of the supporting soils. Also the vertical movements due to compression of the soil should be within tolerable limit for the structure. The foundations in accordance with the recommendations herein will satisfy these criteria.

FOUNDATION DESIGN CRITERIA

The maximum permissible total settlement and differential for the foundation settlement is governed by the technical requirements of the structure.

BEARING CAPACITY OF OPEN FOUNDATION

Bearing capacity analysis for shallow foundations has been done in accordance with IS: 6403-1981. The following equation has been used for the analysis.

 $q_{net \ safe} = 1/F(CN_cS_cD_c + p(N_q-1)S_qD_q + 0.5B_{\gamma}N_{\gamma}S_{\gamma}D_{\gamma}R_w)$

Where q_{net safe} = Safe net bearing capacity of soil based on the shear failure criteria

- C = Cohesion of clay
- γ = Unit weight of soil
- p = Overburden pressure
- B = width of foundation
- R_w = Water table correction factor

Jharkhand Foundation Consultants

F = Factor of safety

 N_{c} , N_{q} , N_{γ} = Bearing capacity factors

 $S_{c_{\gamma}}S_{q_{\gamma}}S_{\gamma}$ = Shape factors

 D_c , D_q , D_γ = Depth factors

All the Bearing capacity factors, Shape factors and depth factors has been considered as IS:6403-1981, Table -1 clause - 5.1.1, 5.1.2.1 and 5.1.2.2 respectively.

SETTLEMENT ANALYSIS FOR SHALLOW FOUNDATION

Settlement calculation has been done as per IS: 8009 (Part-1)-1976.

Immediate settlement considered as per clause 9.2.3.2

 $S_i = (pB(1-\mu^2)I)/E$

Where μ = Piosson's ratio = 0.5 for clay

I = Influence factor

Consolidation settlement considered as per clause 9.2.2.2

 $S_c = Ht/(1+e_0) \ge C_c \log_{10} ((p_0 + \Delta p)/p_0) \ge \lambda_{oed} \ge d_f \ge d_r$

Where S_c = Consolidation settlement

 H_t = Thickness of the compressible layer

 C_c = Co-efficient of consolidation

eo = initial void ratio

 p_0 = initial overburden pressure

 Δp = increase in overburden pressure

 λ_{oed} = Oedometer correction factor

 d_f = depth factor

 d_r = Rigidity factor

CHAPTER - V

5.0 SOIL PROFILE AND & RECOMMENDATION

From the exploratory bore holes at the site it is observed that sub soil formation at this site consists of cohesionless formation at ground surface and highly weathered decomposed product of rock below. Details of the formations along with the "N" values are shown in the field bore log data sheets.

Based on calculation the following bearing capacities are recommended:

SBC for Open foundation					
Depth	(ton/m ²)				
(m) from					
EGL					
1.50	18.0				
2.00	22.0				

* Detail calculations are shown in the subsequent pages.

However, any other alternative solutions may be suitably adopted based on these soil data and with any modified interpretation of geo-technical expert.

A Maiti)

(A Maiti) (M.E. Soil Mech. and Fdn. Engg.) (Chartered Engineer)

221040260G
CALCULATION OF BEARING CAPACITY FOR SHALLOW FOUNDATIONS FROM SHEAR FAILURE CONSIDERATION

	ł			1	ROL	<u>M 5H</u>	EAK	FAILU	<u>JRE C</u>	UNSI	DEKA		N			
	Bearing capacity of foundation of different sizes of foundation at different depth															
	As pe	er IS:64	103-1981	l Cl. 5.1	1.2	re										
	In cas	se of G	eneral s	shear fa	lure											
	Q net saf	_{fe} =1/F	[CN _c S _c	d _c i _c + q	(N _q -1)S _q d _q i	+ 0.5	ΒγN _γ S _γ	d _y i _y R _w ']						
	In cas	e of L	ocal she	ar failu	re											
	q _{net saf}	$t_{e} = 1/3$	F[0.67{C	:N' _c S _c d _c	i _{c}} + q	(N' _q -1)S _q d _q i	_q + 0.51	ΒγN' _γ S _γ	d _y i _y R _w	']					
	Consi	idering	g the wo	orst case	e as fu	ally su	bmer	sed i.e.	water	table r	aises u	pto th	e gr	oun	d surface	
	Wher	e q	et safe = S	Safe bea	ring	capaci	ty									
		Ċ = Ċ	ohësion	ı				B = W	idth of	the fo	undatio)1 1				
		$\gamma = B\iota$	ılk unit	weight												
	$N_{cr} N_{qr} N_{r}$ = Bearing capacity factors $d_{cr} d_{qr} d_{r}$ = Depth factors															
	$S_{cr} S_{ar} S_{r} =$ Shape Factors $i_{cr} i_{ar} i_{r} =$ Inclination factors															
	SHAPE FACTORS (IS:6403-1981). Clause 5.1.2.1. table-2															
	Shape of foundation s _c s _q								Sγ							
		i)Co	ntinuou	s strip			1.00			1.00			1.00			
		ii) Ra	ctangle			1.	+0.2(B	/L)	1	+0.2(B/	′L)	1-0.	4(B/	'L)]	
		iii) Sq	uare				1.30			1.20		(0.80			
		iv) Ci	rcular		110-267		1.30	lauge h		1.20			0.60			
		DEPI	H FAC	1085	(15:64	103-19	81), C	lause 5	.1.2.2	_			1			
		$\mathbf{d_c} = \frac{1+0.2(D/B)\operatorname{sqrt}(N_{\Phi})}{1+0.2(D/B)\operatorname{sqrt}(N_{\Phi})}$														
		d_q for $\Phi < 10^0 = 1$ for $\Phi > 10^0 = 1 + 0.1(D_t/B)$ sqrtt					Nφ									
	d _{γ} for $\Phi < 10^0 = 1$ for $\Phi > 10^0 = 1 + 0.1(D_f/B)$ sqrt					N_{Φ}										
	Now, C = $0 t/m^2 \gamma = 2.000 t/m^3$ SqN _{Φ} = 1						1.942									
			Φ =		3	36	$\gamma_{sub} =$	1.000	t/m ³		C'=	0				
	Beari	ng Caj	pacity fa	actors a	s per	IS:640	3-1981	l Table	1 Clau	ise 5.1.	1					
			BCE	tore	Ger	ieral S	hear	Lo	cal Sh	ear						
.,,,,]					failue	r	1	failuer				*, ·			
			N	c [≡]		47.718	3		21.360							
			N	q =		34.79			11.123							
			N) ⁺⁼		50.593	3		11.477							
	Using	the Fac	tor of Saf	ety =	6											
	foi		e of ion	h of ion											q _{net safe}	
	Siz	ICCAL	uap. Idat	eptl	R.,	Sha	ine fa	ctors	De	oth fa	ctors	Incli	inat	ion	from	SBC
		mo	Sł	D III			-p - 1-			P		fa	ctor	s	GSFailure	T/m^2
	4	Ĥ	Ţ	Ψ.											t/m²	
	B	L		1 50	0.50	S_c	S_q	Sy	d _c	d_q	d _y	i _c	iq	iy	1015	1015
	2.00	2.00		1.50	0.50	1.30	1.20	0.80	1.39	1.19	1.19				19.34	19.34
	2.50	2.50		1.50	0.50	1.30	1.20	0.80	1.23	1.12	1.12				20.73	20.73
	3.00	3.00		1.50	0.50	1.30	1.20	0.80	1.19	1.10	1.10				22.22	22.22
	1.50	1.50		2.00	0.50	1.30	1.20	0.80	1.52	1.26	1.26				23.38	23.38
	2.00	2.00	Square	2.00	0.50	1.30	1.20	0.80	1.39	1.19	1.19				24.20	24.20
	2.50	2.50	oquare	2.00	0.50	1.30	1.20	0.80	1.31	1.16	1.16				25.36	25.36
	3.00	3.00		2.00	0.50	1.30	1.20	0.80	1.20	1.13	1.13				20.09	20.69
	2.00	2.00		2.50	0.50	1.30	1.20	0.80	1.05	1.32	1.52				29.38	29.38
	2,50	2.50		2.50	0.50	1.30	1.20	0.80	1.39	1.19	1.19				30.24	30.24
	3.00	3.00		2.50	0.50	1.30	1.20	0.80	1.32	1.16	1.16				31.38	31.38
		_			and the second second								and the second second	14 3 00 10 10		

Jharkhand Foundation Consultants

٠

221040260G

1

GEOTEC CENTRA	GEOTECHNICAL INVESTIGATION FOR THE PROPOSED CONSTRUCTION OF G + 3 STORIED BUILDING IN PARMANENT CAMPUS OF CENTRAL UNIVERSITY OF JHARKHAND IN VILLAGE - CHERI/MANATU UNDER J:HARKHAND										
Bore Hol Method	le No. B of Boring A	<u>FIELD</u> H-01 (School of Ma Luger and Rotary	BORE :	LOG DA' aent Parik	<u>FA SHE</u> h Ji)	<u>ET</u> Water	Table	:		2.50m bg	1
Dia. of the Date of C	Commencement 2	1/02/2012			<u> </u>	Date of	of Con	pletic	n	21/02/20	012
Date and Depth	DESCRIPT	ION	SYMBOL	DEP From(m)	TH To (m)	0-15	SPT 15-30	30-45	N-Value	Type of sample	Remarks
	Reddish mooram			0.50	-	~	-	-	-	DS	
	1.00m			1.00	1.45	10	15	20	35	SPT/DS	
	White grey soft rock			2.00	2.20	32, 50 5cm j	0 blow penetr	rs for ation	>100	SPT/DS	
				(Termina	ation De	epth =	2.00	m)			
	•										
SPT - Sta	andard Penetration Tes	its		DS - Dist	urbed sa	amples	! ;	UDS -	- Undist	urbed sa	nples

221040260G

. . .

·*2 *

GEOTECI CENTRA	HNICAL INVESTIGATION L UNIVERSITY OF JHARK	FOR THE PROPOSE CHAND IN VILLAGE	D CONST - CHERI/N JHA	RUCTION MANATU U ARKHAND	OF G + 3 NDER	STORIE	ED BUII	LDING KAN	IN PARN NKE BLO	IANENT C CK, DISTT.	AMPUS OF - RANCHI,
D TT		FIELD	BORE	LOG DA	TA SHE	ET					
Method	of Boring A	Auger and Rotary	lanagem	ent Fariki	1 31)	Water	Table	9		2.50m bg	;I
Date of C	Commencement 2	1/02/2012				Date of	of Con	npletio	on	21/02/2	012
Date and	DESCRIPT	TION	SYMBOL	DEP	ГН		SPT		N-Value	Type of	Remarks
Depth				From(m)	To (m)	0-15	15-30	30-45		sample	
				0.50	-	-	-	-	-	DS	
	Light yellowish grey s coarse sand and grave	ooft rock mix with eles		· 1.00	1.45	6	8	10	18	SPT/DS	
				2.00 3.00	2.45 3.45	6	18 14	19 30	37	SPT/DS	
				4.00	4.19	31, 5 4cm	0 blow penetr	vs for ation	>100	SPT/DS	
				(Termina	ation D	epth = I	= 4.00) m) 			
		~			-					·,	
					2						
SPT - St	l andard Penetration Te	sts		DS - Dist	urbed s	ample	s	UDS	- Undist	turbed sa	mples

٦

221040260G

· .

REPORT ON GEOTECHNICAL INVESTIGATION

A

FOR THE CONSTRUCTION OF THE PROPOSED G+3 STORIED <u>PG BOYS</u> <u>HOSTEL-1</u> IN PERMANENT CAMPUS OF CENTRAL UNIVERSITY OF JHARKHAND AT VILLAGE CHERI / MANATU, IN BLOCK - KANKE RANCHI

> SUBMITTED TO: O.S.D. PROJECT CENTRAL UNIVERSITY OF JHARKHAND CITY CENTRE OPP. CMPDI, KANKE ROAD RANCHI, JHARKHAND

EXECUTED BY:

JHARKHAND FOUNDATION CONSULTANTS Regd. Office: FLAT NO. 4-D (4TH FLOOR) LAXMI APPARTMENT OLD ARGORA ROAD, ARGORA RANCHI – 834002 Ph. – 9431389413 / 09931095033

491-5

Table of Contents

> CHAPTER I	
Introduction	1
CHAPTER II	
Project Details	2
CHAPTER III	
Laboratory Testings	3
CHAPTER IV	
Foundation Design & aspects	4-5
CHAPTER V	6
Sub-Soil profile and recommendation	0
Calculation of bearing capacity	7
Field Bore Log data sheet	8-9

.

CHAPTER - I

1.0 INTRODUCTION:

- 1.1. In an attempt to facilitate the design of foundation structures for the construction of the proposed <u>PG Boys Hostel-1</u> in permanent campus of Central University of Jharkhand at village Cheri / Manatu, Block-Kanke, Ranchi, Jharkhand a subsoil investigation work was programmed and for this, the services of M/s. Jharkhand Foundation Consultants, Flat No. 4D (Forth Floor), Laxmi Apartment, Old Argora Road, Argora, Ranchi-834002.
- 1.2. The scope of the soil investigation consisted of making two nos. of bore holes for this proposed building.
- 1.3. The formation at the site is to be reported for various layers presented at their respective depth along with their thickness. This would also include the subsoil properties for each stratum so as to come up with the design parameters for designing foundations, the depth of foundation and the selection of type of foundation. As the ground water table location influences the bearing capacity of a foundation and the method of construction of a foundation at the site, its location has also to be found.
- 1.4. Soil samples both in disturbed and undisturbed condition wherever possible are to be collected. These samples would be different laboratory tests to obtain various properties of sub-soil formation.
- 1.5. The exploration of the sub-soil formation being limited to **two** nos. bore holes it is suggested that due weighted is given to the unexplored part of the area at the time of selecting design parameters.

Jharkhand Foundation Consultant

indatio

ispare?

.

CHAPTER - II

2.0 PROJECT DETAILS:

2.1. The fieldwork consisted of **two** nos. of bore hole at pre-determined location. The detail of fieldwork like depth of bore hole, date of the field work of site are presented below in tabular form:

Sl. No.	Bore Hole No.	Terminating Depth (M)	Date of commencement	Date of completion
1	BH-01	2.50	20/02/2012	20/02/2012
2	BH-02	3.00	20/02/2012	20/02/2012

The fieldwork also included collection of undisturbed samples, disturbed samples and conducting standard penetration tests at regular intervals. The bore holes of 150mm diameter (SX size) are sunk by hand auger boring. The field work was carried out as per IS: 1892.

2.2. Standard penetration tests were conducted in the bore hole at regular intervals as per IS: 2 addition bore hole using a split spoon sampler. The split spoon sampler used for this test advanced by driving with a monkey weighing 63.5kg, falling freely through 750mm. The soil specimens were preserved in polythene bags for logging purpose.

CHAPTER - III

3. LABORATORY TESTING:

No laboratory tests were conducted on the collected samples due to the presence of moorum, kankars and highly weathered decomposed product of rock.

Grain size analysis. Liquid Limit, Plastic Limit Tests. Bulk Density, Dry Density. Natural Moisture Content. Specific Gravity. Unconsolidated Undrained (UU) test. One dimensional consolidation test.

The tests were conducted as per relevant IS Specifications.

Jharkhand Foundation Consultants

CHAPTER - IV

4.0 FOUNDATION DESIGN ASPECTS:

A suitable foundation for any structure should have an adequate factor of safety exceeding the bearing capacity of the supporting soils. Also the vertical movements due to compression of the soil should be within tolerable limit for the structure. The foundations in accordance with the recommendations herein will satisfy these criteria.

FOUNDATION DESIGN CRITERIA

The maximum permissible total settlement and differential for the foundation settlement is governed by the technical requirements of the structure.

BEARING CAPACITY OF OPEN FOUNDATION

Bearing capacity analysis for shallow foundations has been done in accordance with IS: 6403-1981. The following equation has been used for the analysis.

 $q_{\text{net safe}} = 1/F(CN_cS_cD_c + p(N_q-1)S_qD_q + 0.5B_{\gamma}N_{\gamma}S_{\gamma}D_{\gamma}R_w)$

Where q_{net safe} = Safe net bearing capacity of soil based on the shear failure criteria

- C = Cohesion of clay
- γ = Unit weight of soil
- p = Overburden pressure
- B = width of foundation
- R_w = Water table correction factor

oundatio,

Jharkhand Foundation Consultants

F = Factor of safety

 N_{c} , N_{q} , N_{γ} = Bearing capacity factors

 S_{c}, S_{q}, S_{γ} = Shape factors

 D_c , D_q , D_γ = Depth factors

All the Bearing capacity factors, Shape factors and depth factors has been considered as IS:6403-1981, Table -1 clause - 5.1.1, 5.1.2.1 and 5.1.2.2 respectively.

SETTLEMENT ANALYSIS FOR SHALLOW FOUNDATION

Settlement calculation has been done as per IS: 8009 (Part-1)-1976.

Immediate settlement considered as per clause 9.2.3.2

 $S_i = (pB(1-\mu^2)I)/E$

Where μ = Piosson's ratio = 0.5 for clay

I = Influence factor

Consolidation settlement considered as per clause 9.2.2.2

 $S_c = Ht/(1+e_0) \ge C_c \log_{10} ((p_0 + \Delta p)/p_0) \ge \lambda_{oed} \ge d_f \ge d_r$

Where $S_c = Co$ solidation settlement

 H_t = Thickness of the compressible layer

 C_c = Co-efficient of consolidation

 e_0 = initial void ratio

 p_0 = initial overburden pressure

 Δp = increase in overburden pressure

 λ_{oed} = Oedometer correction factor

 d_f = depth factor

 d_r = Rigidity factor

Jharkhand Foundation Consultants

1.

CHAPTER - V

5.0 SOIL PROFILE AND & RECOMMENDATION

From the exploratory bore holes at the site it is observed that sub soil formation at this site consists of cohesionless formation at ground surface and highly weathered decomposed product of rock below. Details of the formations along with the "N" values are shown in the field bore log data sheets.

Based on calculation the following bearing capacities are recommended:

SBC for O	SBC for Open foundation							
Depth	(ton/m ²)							
(m) from								
EGL								
1.50	18.0							
2.00	22.0							

* Detail calculations are shown in the subsequent pages. However, any other alternative solutions may be suitably adopted based on these soil data and with any modified interpretation of geo-technical expansion

(A Maiti) (M.E. Soil Mech. and Fdn. Engg.) (Chartered Engineer)

Iharkhand Foundation

ndatio

Panch

CALCULATION OF BEARING CAPACITY FOR SHALLOW FOUNDATIONS FROM SHEAR FAILURE CONSIDERATION

				ROP	<u>A SH</u>	EAR .	FAILU	JRE C	ONS.	DEKA		<u>N</u>				1
Beari	ng cap	pacity of	founda	ation	of diff	erent	sizes of	found	lation	at diffe	rent d	eptł	n			
As per IS:6403-1981 Cl. 5.1.2																
In ca	se of G	eneral s	shear fa	ilure												
q _{net sa}	_{fe} =1/F	F[CN _c S _c	d _c i _c + q	(N _q -1)S _q d _q i	₉ + 0.5	ΒγΝ _γ S _γ	d _y i _y R _w ']							
In cas	se of L	ocal she	ar failu	ire		-										
g _{net sa}	$f_{e} = 1/2$	F[0.67{C	N'S.d.	$i_{cl} + q$	(N'1	.)S _a d _a i	a + 0.51	BγN',S,	d,i,R,	']						
Cons	Considering the worst case as fully submersed i.e. water table raises upto the ground surface															
Whe	re a.	$a_{ab} = 9$	Safe bea	ring	apaci	itv					1	0				
	C = C	ohesior		0	1		$\mathbf{R} = \mathbf{W}$	iđth of	the fo	undatio		• •				
	$v = B_1$	ilk iinit	ı weight				0 11	iadii 01	uic io	unaum						
	NN	N = B	earing c	anacit	v facto	175	4.4.6	= D	enth fa	actors						
					<i>y</i> 10200			- I I		. (-					
	S_c, S_q	$S_{\gamma} = Sn$	аре гас	tors	02 10		$1_{c}, 1_{q}, 1_{\gamma}$	= Incl	manor	1 factor	5					
	SHA	PE FAC	ndatio	(15:64	03-19	81), C	lause 5	1.2.1,1	table-2		r	\$		1		
	Shap	e 01 10u	nuario			1.00			1.00		<u> </u>	-γ 1.00		-		1
	$\frac{1}{10}$ Co	otangla	is strip		1	1.00	/1)	1	1.00 +0.2/B	/1)	1_0	1.00 4/B/	<u>'T \</u>	1		
Í	iii) Sa	langle			1	1 30			1 20	L)		1.80	5)			
	iv) Ci	rcular				1.30			1.20			0.60		-		
	DEPI	THFAC	TORS	(15:64	03-19	81), C	lause 5	.1.2.2						J		
	Г			1+0	2(D/)	R)cart	(NL)					1				
				1.0.	$\frac{2(D)}{D < 10^{\circ}}$	- 1	$(1 \lor \phi)$	$10^{0} - 1$	L 0 1/D	(P) cont	NI					
		a _q			10	-1	101 0 2	10 ~ 1	+ 0.1(D	() Djsqrt	<u></u>					1
	L	dγ		for q	$p < 10^{-2}$	= 1	for $\Phi >$	$10^{\circ} = 1$	+ 0.1(D	(/ B)sqrt	ίN _Φ]				
Now	,	C =		0	t/m ⁻	γ=	1.925	t/m°		SqN₀=	1.963					
		Φ ≕		3	36	$\gamma_{sub} =$	0.925	t/m ^o		C'=	0					1
Beari	ng Caj	pacity fa	actors a	s per	IS:640	3-1981	I Table	1 Clau	ıse 5.1	.1						
		BCE	actors	Gen	eral S	Shear	Lo	cal Sh	ear							
					failue	r	i	uliuei								
		N	c=		49.31	6		21.846								
		N	a=		36.28	;		11.475								
		N			53.15	6		11.930								
Using	the Fac	tor of Saf	fetv =	6			L			1						
ار	5 F	Jo u	भु ह											a		
Ze		pe	atic								Incl	inat	ion	Inet safe	SBC	
is.	pu	Sha	Dep	R _w	Sha	ape fa	ctors	De	pth fa	ctors	fa	ctor	s	GSFailure	T/m^2	
	tou	fou	fou										0	1/m ²	1/ III	
			:		G	5	5	d	<u> </u>	<u> </u>			L i	<u>ч</u>		1
в 1,50	L 1.50		1 50	0,50	1.30	1.20	0.80	1.39	1.20	1.20		-4 		17.83	17.83	
2.00	2.00		1.50	0.50	1.30	1.20	0.80	1.29	1.15	1.15				19.06	19.06	1
2.50	2.50		1.50	0.50	1.30	1.20	0.80	1.24	1.12	1.12				20.47	20.47	1
3.00	3.00		1.50	0.50	1.30	1.20	0.80	1.20	1.10	1.10				21.99	21.99	1
1.50	1.50		2.00	0.50	1.30	1.20	0.80	1.52	1.26	1.26				22.92	22.92	
2.00	2.00	Sauare	2.00	0.50	1.30	1.20	0.80	1.39	1.20	1.20				23.78	23.78	
2.50	2.50	oquine	2.00	0.50	1.30	1.20	0.80	1.31	1.16	1.16				24.97	24.97	
3.00	3.00		2.00	0.50	1.30	1.20	0.80	1.26	1.13	1.13				26.33	26.33	
1.50	1.50		2.50	0.50	1.30	1.20	0.80	1.65	1.33	1.33				28.44	28.44	
2.00	2.00		2.50	0.50	1.30	1.20	0.80	1.47	1.25	1.25				20.02	20.02	
2.00	3.00		2.50	0.50	1.30	1.20	0.80	1.33	1.16	1.16				30.89	30.89	
0.00	0.00		2.00	0.00	1.00	1.20	0.00	1.00	1.10	1.10				00.05	00.00	I

GEOTECI CENTRA	HNICAL INVESTIGATION FOR THE PROPO L UNIVERSITY OF JHARKHAND IN VILLAG	SED CONST E - CHERI/I JHA	IRUCTION MANATU U ARKHAND	OF G + 3 INDER	STORII	ED BUII	LDING KAN	IN PARN NKE BLO	IANENT C CK, DISTT.	AMPUS OF - RANCHI,
	FIEL	D BORE	LOG DA	TA SHE	ET					
Bore Hol	e No. BH-01 (P.G. Boys	Hostel)								
Method o	of Boring Auger and Rotary	7			Wate	r Table	9		2.50m bg	;1
Dia. of th	ne Bore Hole 150 mm									
Date of C	of Commencement 20/02/2012 Date of Complet								20/02/2	J12 Remarka
Date and	DESCRIPTION	SYMBOL	DEP	TH	0.15	SPT	20.45	N-Value	sample	Remarks
Deput	· · · · · · · · · · · · · · · · · · ·	15 and as the	From(m)	10 (m)	0-15	13-30	50-45	[
	Reddish brown mooram with pebbles 0.50m		0.50		-	-	-	-	DS	
			1.00	1.45	6	8	10	18	SPT/DS	
	Light brownish yellow soft rock m	ix	2.00	2.45	21	29	34	63	SPT/DS	
			2.50	2.54	50 bl pe	ows fo netrat	or 4cm ion	>100	SPT/DS	
			(Termin	I ation D	i epth =	= 2.50	() m)			
			-							
									-	
								÷		

221040260E

GEOTEC CENTRA	HNICAL INVESTIGATI	ION FOR THE PROPOSE ARKHAND IN VILLAGE	ED CONST - CHERI/I JH/	TRUCTION MANATU U ARKHAND	OF G + 3 NDER	STORIE	ED BUII	LDING KAN	IN PARN NKE PLO	IANENT C CK, DISTT	AMPUS OF - RANCHI,
		FIELT	BORE	LOG DA'	LA SHE	ET					
Bore Hol Method	le No. of Boring	BH-02 (P.G. Boys H Auger and Rotary	Hostel)	<u>200211</u>		Water	r Table	9		2.50m bg	çI
Dia. of th	ne Bore Hole Commencement	150 mm 20/02/2012				Date	of Con	npletio	on	20/02/2	012
Date and	DESCR	RIPTION	SYMBOL	DEP	гн		SPT		N-Value	Type of	Remarks
Depth				From(m)	To (m)	0-15	15-30	30-45		sample	
				0.50	-	-	-	-	-	DS	
	Reddish mooram			1.00	1.45	4	5	6	11	SPT/DS	
			235	2.00	2.45	6	8	12	20	SPT/DS	
	2.5 Light grey soft roc and pabbles	0m k mix with graveles		3.00	3.34	17, 3 f pe	2, 50 b for 4cn netrati	olows n ion	>100	SPT/DS	
				(Termina	ation D	 epth = 	 = 3.00) m) 			
				-							
SPT - Sta	andard Penetration	Tests		DS - Dist	urbed s	amples	s	UDS	- Undisi	turbed sa	mples

• #*

221040260E

,

A

REPORT ON GEOTECHNICAL INVESTIGATION FOR THE CONSTRUCTION OF THE PROPOSED G+3 STORIED <u>PG BOYS</u> <u>HOSTEL-2</u> IN PERMANENT CAMPUS OF CENTRAL UNIVERSITY OF JHARKHAND AT VILLAGE CHERI / MANATU, IN BLOCK - KANKE RANCHI

SUBMITTED TO: O.S.D. PROJECT CENTRAL UNIVERSITY OF JHARKHAND CITY CENTRE OPP. CMPDI, KANKE ROAD RANCHI, JHARKHAND

EXECUTED BY:

JHARKHAND FOUNDATION CONSULTANTS Regd. Office: FLAT NO. 4-D (4TH FLOOR) LAXMI APPARTMENT OLD ARGORA ROAD, ARGORA RANCHI – 834002 Ph. – 9431389413 / 09931095033

221040260J

Table of Contents

> CHAPTER I	
Introduction	1
CHAPTER II	
Project Details	2
CHAPTER III	
Laboratory Testings	3
CHAPTER IV	
Foundation Design & aspects	4-5
CHAPTER V	C
Sub-Soil profile and recommendation	0
Calculation of bearing capacity	7
Field Bore Log data sheet	8-9

CHAPTER - I

1.0 INTRODUCTION:

- 1.1. In an attempt to facilitate the design of foundation structures for the construction of the proposed <u>PG Boys Hostel-2</u> in permanent campus of Central University of Jharkhand at village Cheri / Manatu, Block-Kanke, Ranchi, Jharkhand a subsoil investigation work was programmed and for this, the services of M/s. Jharkhand Foundation Consultants, Flat No. 4D (Forth Floor), Laxmi Apartment, Old Argora Road, Argora, Ranchi-834002.
- 1.2. The scope of the soil investigation consisted of making two nos. of bore holes for this proposed building.
- 1.3. The formation at the site is to be reported for various layers presented at their respective depth along with their thickness. This would also include the subsoil properties for each stratum so as to come up with the design parameters for designing foundations, the depth of foundation and the selection of type of foundation. As the ground water table location influences the bearing capacity of a foundation and the method of construction of a foundation at the site, its location has also to be found.
- 1.4. Soil samples both in disturbed and undisturbed condition wherever possible are to be collected. These samples would be different laboratory tests to obtain various properties of sub-soil formation.
- 1.5. The exploration of the sub-soil formation being limited to two nos. bore holes it is suggested that due weighted is given to the unexplored part of the area at the time of selecting design parameters.

221040260J

Jharkhand Foundation Consultants

oundation

CHAPTER - II

2.0 **PROJECT DETAILS:**

2.1. The fieldwork consisted of **two** nos. of bore hole at pre-determined location. The detail of fieldwork like depth of bore hole, date of the field work of site are presented below in tabular form:

Sl. No.	Bore Hole No.	Terminating Depth (M)	Date of commencement	Date of completion
1	BH-01	2.00	22/02/2012	22/02/2012
2	BH-02	2.50	22/02/2012	22/02/2012

The fieldwork also included collection of undisturbed samples, disturbed samples and conducting standard penetration tests at regular intervals. The bore holes of 150mm diameter (SX size) are sunk by hand auger boring. The field work was carried out as per IS: 1892.

2.2. Standard penetration tests were conducted in the bore hole at regular intervals as per IS: 2131 in bore hole using a split spoon sampler. The split spoon sampler used for this test advanced by driving with a monkey weighing 63.5kg, falling freely through 750mm. The soil specimens were preserved in polythene bags for logging purpose.

CHAPTER - III

3. LABORATORY TESTING:

No laboratory tests were conducted on the collected samples due to the presence of moorum, kankars and highly weathered decomposed product of rock.

Grain size analysis. Liquid Limit, Plastic Limit Tests. Bulk Density, Dry Density. Natural Moisture Content. Specific Gravity. Unconsolidated Undrained (UU) test. One dimensional consolidation test.

The tests were conducted as per relevant **IS** Specifications.

.

CHAPTER - IV

4.0 FOUNDATION DESIGN ASPECTS:

A suitable foundation for any structure should have an adequate factor of safety exceeding the bearing capacity of the supporting soils. Also the vertical movements due to compression of the soil should be within tolerable limit for the structure. The foundations in accordance with the recommendations herein will satisfy these criteria.

FOUNDATION DESIGN CRITERIA

The maximum permissible total settlement and differential for the foundation settlement is governed by the technical requirements of the structure.

BEARING CAPACITY OF OPEN FOUNDATION

Bearing capacity analysis for shallow foundations had been done in accordance with IS: 6403-1981. The following equation has been used for the analysis.

 $q_{\text{net safe}} = 1/F(CN_cS_cD_c + p(N_q-1)S_qD_q + 0.5B_{\gamma}N_{\gamma}S_{\gamma}D_{\gamma}R_w)$

Where q_{net safe} = Safe net bearing capacity of soil based on the shear failure criteria

- C = Cohesion of clay
- γ = Unit weight of soil
- p = Overburden pressure
- B = width of foundation
- R_w = Water table correction factor

F = Factor of safety

 N_{c} , N_{q} , N_{γ} = Bearing capacity factors

 $S_{c,} S_{q,} S_{\gamma}$ = Shape factors

 D_c , D_q , D_γ = Depth factors

All the Bearing capacity factors, Shape factors and depth factors has been considered as IS:6403-1981, Table -1 clause - 5.1.1, 5.1.2.1 and 5.1.2.2 respectively.

SETTLEMENT ANALYSIS FOR SHALLOW FOUNDATION

Settlement calculation has been done as per IS: 8009 (Part-1)-1976.

Immediate settlement considered as per clause 9.2.3.2

 $S_i = (pB(1-\mu^2)I)/E$

Where μ = Piosson's ratio = 0.5 for clay

I = Influence factor

Consolidation settlement considered as per clause 9.2.2.2

 $S_c = Ht/(1+e_0) \ge C_c \log_{10} ((p_0 + \Delta p)/p_0) \ge \lambda_{oed} \ge d_f \ge d_r$

Where S_c = Consolidation settlement

 H_t = Thickness of the compressible layer

 C_c = Co-efficient of consolidation

- e_0 = initial void ratio
- p_0 = initial overburden pressure
- Δp = increase in overburden pressure
- λ_{oed} = Oedometer correction factor
- d_f = depth factor
- dr = Rigidity factor

CHAPTER - V

5.0 SOIL PROFILE AND & RECOMMENDATION

From the exploratory bore holes at the site it is observed that sub soil formation at this site consists of cohesionless formation at ground surface and highly weathered decomposed product of rock below. Details of the formations along with the "N" values are shown in the field bore log data sheets.

Based on calculation the following bearing capacities are recommended:

SBC for Open foundation	
Depth	(ton/m ²)
(m) from	
EGL	
1.50	18.0
2.00	23.0

* Detail calculations are shown in the subsequent pages. However, any other alternative solutions may be suitably adopted based on these soil data and with any modified interpretation of grad-technical expert.

Alanto.

(A Maiti) (M.E. Soil Mech. and Fdn. Engg.) (Chartered Engineer)

